Metamath Proof Explorer


Theorem bnj593

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj593.1
|- ( ph -> E. x ps )
bnj593.2
|- ( ps -> ch )
Assertion bnj593
|- ( ph -> E. x ch )

Proof

Step Hyp Ref Expression
1 bnj593.1
 |-  ( ph -> E. x ps )
2 bnj593.2
 |-  ( ps -> ch )
3 2 eximi
 |-  ( E. x ps -> E. x ch )
4 1 3 syl
 |-  ( ph -> E. x ch )