Step |
Hyp |
Ref |
Expression |
1 |
|
bnj601.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj601.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj601.3 |
|- D = ( _om \ { (/) } ) |
4 |
|
bnj601.4 |
|- ( ch <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn n /\ ph /\ ps ) ) ) |
5 |
|
bnj601.5 |
|- ( th <-> A. m e. D ( m _E n -> [. m / n ]. ch ) ) |
6 |
|
biid |
|- ( [. m / n ]. ph <-> [. m / n ]. ph ) |
7 |
|
biid |
|- ( [. m / n ]. ps <-> [. m / n ]. ps ) |
8 |
|
biid |
|- ( [. m / n ]. ch <-> [. m / n ]. ch ) |
9 |
|
bnj602 |
|- ( y = z -> _pred ( y , A , R ) = _pred ( z , A , R ) ) |
10 |
9
|
cbviunv |
|- U_ y e. ( f ` p ) _pred ( y , A , R ) = U_ z e. ( f ` p ) _pred ( z , A , R ) |
11 |
10
|
opeq2i |
|- <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. = <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. |
12 |
11
|
sneqi |
|- { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } = { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } |
13 |
12
|
uneq2i |
|- ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) = ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) |
14 |
|
dfsbcq |
|- ( ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) = ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) -> ( [. ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) / f ]. ph <-> [. ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) / f ]. ph ) ) |
15 |
13 14
|
ax-mp |
|- ( [. ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) / f ]. ph <-> [. ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) / f ]. ph ) |
16 |
|
dfsbcq |
|- ( ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) = ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) -> ( [. ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) / f ]. ps <-> [. ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) / f ]. ps ) ) |
17 |
13 16
|
ax-mp |
|- ( [. ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) / f ]. ps <-> [. ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) / f ]. ps ) |
18 |
|
dfsbcq |
|- ( ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) = ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) -> ( [. ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) / f ]. ch <-> [. ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) / f ]. ch ) ) |
19 |
13 18
|
ax-mp |
|- ( [. ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) / f ]. ch <-> [. ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) / f ]. ch ) |
20 |
13
|
eqcomi |
|- ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
21 |
|
biid |
|- ( ( f Fn m /\ [. m / n ]. ph /\ [. m / n ]. ps ) <-> ( f Fn m /\ [. m / n ]. ph /\ [. m / n ]. ps ) ) |
22 |
|
biid |
|- ( ( m e. D /\ n = suc m /\ p e. m ) <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
23 |
|
biid |
|- ( ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
24 |
|
biid |
|- ( ( i e. _om /\ suc i e. n /\ m = suc i ) <-> ( i e. _om /\ suc i e. n /\ m = suc i ) ) |
25 |
|
biid |
|- ( ( i e. _om /\ suc i e. n /\ m =/= suc i ) <-> ( i e. _om /\ suc i e. n /\ m =/= suc i ) ) |
26 |
|
eqid |
|- U_ y e. ( f ` i ) _pred ( y , A , R ) = U_ y e. ( f ` i ) _pred ( y , A , R ) |
27 |
|
eqid |
|- U_ y e. ( f ` p ) _pred ( y , A , R ) = U_ y e. ( f ` p ) _pred ( y , A , R ) |
28 |
|
eqid |
|- U_ y e. ( ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) ` i ) _pred ( y , A , R ) = U_ y e. ( ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) ` i ) _pred ( y , A , R ) |
29 |
|
eqid |
|- U_ y e. ( ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) ` p ) _pred ( y , A , R ) = U_ y e. ( ( f u. { <. m , U_ z e. ( f ` p ) _pred ( z , A , R ) >. } ) ` p ) _pred ( y , A , R ) |
30 |
1 2 3 4 5 6 7 8 15 17 19 20 21 22 23 24 25 26 27 28 29 20
|
bnj600 |
|- ( n =/= 1o -> ( ( n e. D /\ th ) -> ch ) ) |