Metamath Proof Explorer


Theorem bnj602

Description: Equality theorem for the _pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj602
|- ( X = Y -> _pred ( X , A , R ) = _pred ( Y , A , R ) )

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( X = Y -> ( y R X <-> y R Y ) )
2 1 rabbidv
 |-  ( X = Y -> { y e. A | y R X } = { y e. A | y R Y } )
3 df-bnj14
 |-  _pred ( X , A , R ) = { y e. A | y R X }
4 df-bnj14
 |-  _pred ( Y , A , R ) = { y e. A | y R Y }
5 2 3 4 3eqtr4g
 |-  ( X = Y -> _pred ( X , A , R ) = _pred ( Y , A , R ) )