Step |
Hyp |
Ref |
Expression |
1 |
|
bnj605.5 |
|- ( th <-> A. m e. D ( m _E n -> [. m / n ]. ch ) ) |
2 |
|
bnj605.13 |
|- ( ph" <-> [. f / f ]. ph ) |
3 |
|
bnj605.14 |
|- ( ps" <-> [. f / f ]. ps ) |
4 |
|
bnj605.17 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
5 |
|
bnj605.19 |
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
6 |
|
bnj605.28 |
|- f e. _V |
7 |
|
bnj605.31 |
|- ( ch' <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) ) |
8 |
|
bnj605.32 |
|- ( ph" <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
9 |
|
bnj605.33 |
|- ( ps" <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
10 |
|
bnj605.37 |
|- ( ( n =/= 1o /\ n e. D ) -> E. m E. p et ) |
11 |
|
bnj605.38 |
|- ( ( th /\ m e. D /\ m _E n ) -> ch' ) |
12 |
|
bnj605.41 |
|- ( ( R _FrSe A /\ ta /\ et ) -> f Fn n ) |
13 |
|
bnj605.42 |
|- ( ( R _FrSe A /\ ta /\ et ) -> ph" ) |
14 |
|
bnj605.43 |
|- ( ( R _FrSe A /\ ta /\ et ) -> ps" ) |
15 |
10
|
anim1i |
|- ( ( ( n =/= 1o /\ n e. D ) /\ th ) -> ( E. m E. p et /\ th ) ) |
16 |
|
nfv |
|- F/ p th |
17 |
16
|
19.41 |
|- ( E. p ( et /\ th ) <-> ( E. p et /\ th ) ) |
18 |
17
|
exbii |
|- ( E. m E. p ( et /\ th ) <-> E. m ( E. p et /\ th ) ) |
19 |
1
|
bnj1095 |
|- ( th -> A. m th ) |
20 |
19
|
nf5i |
|- F/ m th |
21 |
20
|
19.41 |
|- ( E. m ( E. p et /\ th ) <-> ( E. m E. p et /\ th ) ) |
22 |
18 21
|
bitr2i |
|- ( ( E. m E. p et /\ th ) <-> E. m E. p ( et /\ th ) ) |
23 |
15 22
|
sylib |
|- ( ( ( n =/= 1o /\ n e. D ) /\ th ) -> E. m E. p ( et /\ th ) ) |
24 |
5
|
bnj1232 |
|- ( et -> m e. D ) |
25 |
|
bnj219 |
|- ( n = suc m -> m _E n ) |
26 |
5 25
|
bnj770 |
|- ( et -> m _E n ) |
27 |
24 26
|
jca |
|- ( et -> ( m e. D /\ m _E n ) ) |
28 |
27
|
anim1i |
|- ( ( et /\ th ) -> ( ( m e. D /\ m _E n ) /\ th ) ) |
29 |
|
bnj170 |
|- ( ( th /\ m e. D /\ m _E n ) <-> ( ( m e. D /\ m _E n ) /\ th ) ) |
30 |
28 29
|
sylibr |
|- ( ( et /\ th ) -> ( th /\ m e. D /\ m _E n ) ) |
31 |
30 11
|
syl |
|- ( ( et /\ th ) -> ch' ) |
32 |
|
simpl |
|- ( ( et /\ th ) -> et ) |
33 |
31 32
|
jca |
|- ( ( et /\ th ) -> ( ch' /\ et ) ) |
34 |
33
|
2eximi |
|- ( E. m E. p ( et /\ th ) -> E. m E. p ( ch' /\ et ) ) |
35 |
|
bnj248 |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) <-> ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) /\ et ) ) |
36 |
|
pm3.35 |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) |
37 |
7 36
|
sylan2b |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) |
38 |
|
euex |
|- ( E! f ( f Fn m /\ ph' /\ ps' ) -> E. f ( f Fn m /\ ph' /\ ps' ) ) |
39 |
37 38
|
syl |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) -> E. f ( f Fn m /\ ph' /\ ps' ) ) |
40 |
39 4
|
bnj1198 |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) -> E. f ta ) |
41 |
35 40
|
bnj832 |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> E. f ta ) |
42 |
12 13 14
|
3jca |
|- ( ( R _FrSe A /\ ta /\ et ) -> ( f Fn n /\ ph" /\ ps" ) ) |
43 |
42
|
3com23 |
|- ( ( R _FrSe A /\ et /\ ta ) -> ( f Fn n /\ ph" /\ ps" ) ) |
44 |
43
|
3expia |
|- ( ( R _FrSe A /\ et ) -> ( ta -> ( f Fn n /\ ph" /\ ps" ) ) ) |
45 |
44
|
eximdv |
|- ( ( R _FrSe A /\ et ) -> ( E. f ta -> E. f ( f Fn n /\ ph" /\ ps" ) ) ) |
46 |
45
|
ad4ant14 |
|- ( ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) /\ et ) -> ( E. f ta -> E. f ( f Fn n /\ ph" /\ ps" ) ) ) |
47 |
35 46
|
sylbi |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> ( E. f ta -> E. f ( f Fn n /\ ph" /\ ps" ) ) ) |
48 |
41 47
|
mpd |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> E. f ( f Fn n /\ ph" /\ ps" ) ) |
49 |
|
bnj432 |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) <-> ( ( ch' /\ et ) /\ ( R _FrSe A /\ x e. A ) ) ) |
50 |
|
biid |
|- ( f Fn n <-> f Fn n ) |
51 |
|
sbcid |
|- ( [. f / f ]. ph <-> ph ) |
52 |
2 51
|
bitri |
|- ( ph" <-> ph ) |
53 |
|
sbcid |
|- ( [. f / f ]. ps <-> ps ) |
54 |
3 53
|
bitri |
|- ( ps" <-> ps ) |
55 |
50 52 54
|
3anbi123i |
|- ( ( f Fn n /\ ph" /\ ps" ) <-> ( f Fn n /\ ph /\ ps ) ) |
56 |
55
|
exbii |
|- ( E. f ( f Fn n /\ ph" /\ ps" ) <-> E. f ( f Fn n /\ ph /\ ps ) ) |
57 |
48 49 56
|
3imtr3i |
|- ( ( ( ch' /\ et ) /\ ( R _FrSe A /\ x e. A ) ) -> E. f ( f Fn n /\ ph /\ ps ) ) |
58 |
57
|
ex |
|- ( ( ch' /\ et ) -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn n /\ ph /\ ps ) ) ) |
59 |
58
|
exlimivv |
|- ( E. m E. p ( ch' /\ et ) -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn n /\ ph /\ ps ) ) ) |
60 |
23 34 59
|
3syl |
|- ( ( ( n =/= 1o /\ n e. D ) /\ th ) -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn n /\ ph /\ ps ) ) ) |
61 |
60
|
3impa |
|- ( ( n =/= 1o /\ n e. D /\ th ) -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn n /\ ph /\ ps ) ) ) |