Step |
Hyp |
Ref |
Expression |
1 |
|
bnj607.5 |
|- ( th <-> A. m e. D ( m _E n -> [. m / n ]. ch ) ) |
2 |
|
bnj607.13 |
|- ( ph" <-> [. G / f ]. ph ) |
3 |
|
bnj607.14 |
|- ( ps" <-> [. G / f ]. ps ) |
4 |
|
bnj607.17 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
5 |
|
bnj607.19 |
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
6 |
|
bnj607.28 |
|- G e. _V |
7 |
|
bnj607.31 |
|- ( ch' <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) ) |
8 |
|
bnj607.32 |
|- ( ph" <-> ( G ` (/) ) = _pred ( x , A , R ) ) |
9 |
|
bnj607.33 |
|- ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) |
10 |
|
bnj607.37 |
|- ( ( n =/= 1o /\ n e. D ) -> E. m E. p et ) |
11 |
|
bnj607.38 |
|- ( ( th /\ m e. D /\ m _E n ) -> ch' ) |
12 |
|
bnj607.41 |
|- ( ( R _FrSe A /\ ta /\ et ) -> G Fn n ) |
13 |
|
bnj607.42 |
|- ( ( R _FrSe A /\ ta /\ et ) -> ph" ) |
14 |
|
bnj607.43 |
|- ( ( R _FrSe A /\ ta /\ et ) -> ps" ) |
15 |
|
bnj607.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
16 |
|
bnj607.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
17 |
|
bnj607.400 |
|- ( ph0 <-> [. h / f ]. ph ) |
18 |
|
bnj607.401 |
|- ( ps0 <-> [. h / f ]. ps ) |
19 |
|
bnj607.300 |
|- ( ph1 <-> [. G / h ]. ph0 ) |
20 |
|
bnj607.301 |
|- ( ps1 <-> [. G / h ]. ps0 ) |
21 |
10
|
anim1i |
|- ( ( ( n =/= 1o /\ n e. D ) /\ th ) -> ( E. m E. p et /\ th ) ) |
22 |
|
nfv |
|- F/ p th |
23 |
22
|
19.41 |
|- ( E. p ( et /\ th ) <-> ( E. p et /\ th ) ) |
24 |
23
|
exbii |
|- ( E. m E. p ( et /\ th ) <-> E. m ( E. p et /\ th ) ) |
25 |
1
|
bnj1095 |
|- ( th -> A. m th ) |
26 |
25
|
nf5i |
|- F/ m th |
27 |
26
|
19.41 |
|- ( E. m ( E. p et /\ th ) <-> ( E. m E. p et /\ th ) ) |
28 |
24 27
|
bitr2i |
|- ( ( E. m E. p et /\ th ) <-> E. m E. p ( et /\ th ) ) |
29 |
21 28
|
sylib |
|- ( ( ( n =/= 1o /\ n e. D ) /\ th ) -> E. m E. p ( et /\ th ) ) |
30 |
5
|
bnj1232 |
|- ( et -> m e. D ) |
31 |
|
bnj219 |
|- ( n = suc m -> m _E n ) |
32 |
5 31
|
bnj770 |
|- ( et -> m _E n ) |
33 |
30 32
|
jca |
|- ( et -> ( m e. D /\ m _E n ) ) |
34 |
33
|
anim1i |
|- ( ( et /\ th ) -> ( ( m e. D /\ m _E n ) /\ th ) ) |
35 |
|
bnj170 |
|- ( ( th /\ m e. D /\ m _E n ) <-> ( ( m e. D /\ m _E n ) /\ th ) ) |
36 |
34 35
|
sylibr |
|- ( ( et /\ th ) -> ( th /\ m e. D /\ m _E n ) ) |
37 |
36 11
|
syl |
|- ( ( et /\ th ) -> ch' ) |
38 |
|
simpl |
|- ( ( et /\ th ) -> et ) |
39 |
37 38
|
jca |
|- ( ( et /\ th ) -> ( ch' /\ et ) ) |
40 |
39
|
2eximi |
|- ( E. m E. p ( et /\ th ) -> E. m E. p ( ch' /\ et ) ) |
41 |
7
|
biimpi |
|- ( ch' -> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) ) |
42 |
|
euex |
|- ( E! f ( f Fn m /\ ph' /\ ps' ) -> E. f ( f Fn m /\ ph' /\ ps' ) ) |
43 |
41 42
|
syl6 |
|- ( ch' -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn m /\ ph' /\ ps' ) ) ) |
44 |
43
|
impcom |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) -> E. f ( f Fn m /\ ph' /\ ps' ) ) |
45 |
44 4
|
bnj1198 |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) -> E. f ta ) |
46 |
45
|
adantrr |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( ch' /\ et ) ) -> E. f ta ) |
47 |
|
id |
|- ( ( R _FrSe A /\ ta /\ et ) -> ( R _FrSe A /\ ta /\ et ) ) |
48 |
47
|
3com23 |
|- ( ( R _FrSe A /\ et /\ ta ) -> ( R _FrSe A /\ ta /\ et ) ) |
49 |
48
|
3expia |
|- ( ( R _FrSe A /\ et ) -> ( ta -> ( R _FrSe A /\ ta /\ et ) ) ) |
50 |
49
|
eximdv |
|- ( ( R _FrSe A /\ et ) -> ( E. f ta -> E. f ( R _FrSe A /\ ta /\ et ) ) ) |
51 |
50
|
ad2ant2rl |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( ch' /\ et ) ) -> ( E. f ta -> E. f ( R _FrSe A /\ ta /\ et ) ) ) |
52 |
46 51
|
mpd |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( ch' /\ et ) ) -> E. f ( R _FrSe A /\ ta /\ et ) ) |
53 |
12 13 14
|
3jca |
|- ( ( R _FrSe A /\ ta /\ et ) -> ( G Fn n /\ ph" /\ ps" ) ) |
54 |
53
|
eximi |
|- ( E. f ( R _FrSe A /\ ta /\ et ) -> E. f ( G Fn n /\ ph" /\ ps" ) ) |
55 |
|
nfe1 |
|- F/ f E. f ( f Fn n /\ ph /\ ps ) |
56 |
|
nfcv |
|- F/_ h G |
57 |
|
nfv |
|- F/ h G Fn n |
58 |
|
nfsbc1v |
|- F/ h [. G / h ]. ph0 |
59 |
19 58
|
nfxfr |
|- F/ h ph1 |
60 |
|
nfsbc1v |
|- F/ h [. G / h ]. ps0 |
61 |
20 60
|
nfxfr |
|- F/ h ps1 |
62 |
57 59 61
|
nf3an |
|- F/ h ( G Fn n /\ ph1 /\ ps1 ) |
63 |
|
fneq1 |
|- ( h = G -> ( h Fn n <-> G Fn n ) ) |
64 |
|
sbceq1a |
|- ( h = G -> ( ph0 <-> [. G / h ]. ph0 ) ) |
65 |
64 19
|
bitr4di |
|- ( h = G -> ( ph0 <-> ph1 ) ) |
66 |
|
sbceq1a |
|- ( h = G -> ( ps0 <-> [. G / h ]. ps0 ) ) |
67 |
66 20
|
bitr4di |
|- ( h = G -> ( ps0 <-> ps1 ) ) |
68 |
63 65 67
|
3anbi123d |
|- ( h = G -> ( ( h Fn n /\ ph0 /\ ps0 ) <-> ( G Fn n /\ ph1 /\ ps1 ) ) ) |
69 |
56 62 68
|
spcegf |
|- ( G e. _V -> ( ( G Fn n /\ ph1 /\ ps1 ) -> E. h ( h Fn n /\ ph0 /\ ps0 ) ) ) |
70 |
6 69
|
ax-mp |
|- ( ( G Fn n /\ ph1 /\ ps1 ) -> E. h ( h Fn n /\ ph0 /\ ps0 ) ) |
71 |
17 15
|
bnj154 |
|- ( ph0 <-> ( h ` (/) ) = _pred ( x , A , R ) ) |
72 |
71 19 6
|
bnj526 |
|- ( ph1 <-> ( G ` (/) ) = _pred ( x , A , R ) ) |
73 |
8 72
|
bitr4i |
|- ( ph" <-> ph1 ) |
74 |
|
vex |
|- h e. _V |
75 |
16 18 74
|
bnj540 |
|- ( ps0 <-> A. i e. _om ( suc i e. n -> ( h ` suc i ) = U_ y e. ( h ` i ) _pred ( y , A , R ) ) ) |
76 |
75 20 6
|
bnj540 |
|- ( ps1 <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) |
77 |
9 76
|
bitr4i |
|- ( ps" <-> ps1 ) |
78 |
73 77
|
anbi12i |
|- ( ( ph" /\ ps" ) <-> ( ph1 /\ ps1 ) ) |
79 |
78
|
anbi2i |
|- ( ( G Fn n /\ ( ph" /\ ps" ) ) <-> ( G Fn n /\ ( ph1 /\ ps1 ) ) ) |
80 |
|
3anass |
|- ( ( G Fn n /\ ph" /\ ps" ) <-> ( G Fn n /\ ( ph" /\ ps" ) ) ) |
81 |
|
3anass |
|- ( ( G Fn n /\ ph1 /\ ps1 ) <-> ( G Fn n /\ ( ph1 /\ ps1 ) ) ) |
82 |
79 80 81
|
3bitr4i |
|- ( ( G Fn n /\ ph" /\ ps" ) <-> ( G Fn n /\ ph1 /\ ps1 ) ) |
83 |
|
nfv |
|- F/ h ( f Fn n /\ ph /\ ps ) |
84 |
|
nfv |
|- F/ f h Fn n |
85 |
|
nfsbc1v |
|- F/ f [. h / f ]. ph |
86 |
17 85
|
nfxfr |
|- F/ f ph0 |
87 |
|
nfsbc1v |
|- F/ f [. h / f ]. ps |
88 |
18 87
|
nfxfr |
|- F/ f ps0 |
89 |
84 86 88
|
nf3an |
|- F/ f ( h Fn n /\ ph0 /\ ps0 ) |
90 |
|
fneq1 |
|- ( f = h -> ( f Fn n <-> h Fn n ) ) |
91 |
|
sbceq1a |
|- ( f = h -> ( ph <-> [. h / f ]. ph ) ) |
92 |
91 17
|
bitr4di |
|- ( f = h -> ( ph <-> ph0 ) ) |
93 |
|
sbceq1a |
|- ( f = h -> ( ps <-> [. h / f ]. ps ) ) |
94 |
93 18
|
bitr4di |
|- ( f = h -> ( ps <-> ps0 ) ) |
95 |
90 92 94
|
3anbi123d |
|- ( f = h -> ( ( f Fn n /\ ph /\ ps ) <-> ( h Fn n /\ ph0 /\ ps0 ) ) ) |
96 |
83 89 95
|
cbvexv1 |
|- ( E. f ( f Fn n /\ ph /\ ps ) <-> E. h ( h Fn n /\ ph0 /\ ps0 ) ) |
97 |
70 82 96
|
3imtr4i |
|- ( ( G Fn n /\ ph" /\ ps" ) -> E. f ( f Fn n /\ ph /\ ps ) ) |
98 |
55 97
|
exlimi |
|- ( E. f ( G Fn n /\ ph" /\ ps" ) -> E. f ( f Fn n /\ ph /\ ps ) ) |
99 |
52 54 98
|
3syl |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ( ch' /\ et ) ) -> E. f ( f Fn n /\ ph /\ ps ) ) |
100 |
99
|
expcom |
|- ( ( ch' /\ et ) -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn n /\ ph /\ ps ) ) ) |
101 |
100
|
exlimivv |
|- ( E. m E. p ( ch' /\ et ) -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn n /\ ph /\ ps ) ) ) |
102 |
29 40 101
|
3syl |
|- ( ( ( n =/= 1o /\ n e. D ) /\ th ) -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn n /\ ph /\ ps ) ) ) |
103 |
102
|
3impa |
|- ( ( n =/= 1o /\ n e. D /\ th ) -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn n /\ ph /\ ps ) ) ) |