Step |
Hyp |
Ref |
Expression |
1 |
|
bnj609.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj609.2 |
|- ( ph" <-> [. G / f ]. ph ) |
3 |
|
bnj609.3 |
|- G e. _V |
4 |
|
dfsbcq |
|- ( e = G -> ( [. e / f ]. ph <-> [. G / f ]. ph ) ) |
5 |
|
fveq1 |
|- ( e = G -> ( e ` (/) ) = ( G ` (/) ) ) |
6 |
5
|
eqeq1d |
|- ( e = G -> ( ( e ` (/) ) = _pred ( X , A , R ) <-> ( G ` (/) ) = _pred ( X , A , R ) ) ) |
7 |
1
|
sbcbii |
|- ( [. e / f ]. ph <-> [. e / f ]. ( f ` (/) ) = _pred ( X , A , R ) ) |
8 |
|
vex |
|- e e. _V |
9 |
|
fveq1 |
|- ( f = e -> ( f ` (/) ) = ( e ` (/) ) ) |
10 |
9
|
eqeq1d |
|- ( f = e -> ( ( f ` (/) ) = _pred ( X , A , R ) <-> ( e ` (/) ) = _pred ( X , A , R ) ) ) |
11 |
8 10
|
sbcie |
|- ( [. e / f ]. ( f ` (/) ) = _pred ( X , A , R ) <-> ( e ` (/) ) = _pred ( X , A , R ) ) |
12 |
7 11
|
bitri |
|- ( [. e / f ]. ph <-> ( e ` (/) ) = _pred ( X , A , R ) ) |
13 |
3 4 6 12
|
vtoclb |
|- ( [. G / f ]. ph <-> ( G ` (/) ) = _pred ( X , A , R ) ) |
14 |
2 13
|
bitri |
|- ( ph" <-> ( G ` (/) ) = _pred ( X , A , R ) ) |