Description: Pass from equality ( x = A ) to substitution ( [. A / x ]. ) without the distinct variable condition on A , x . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj610.1 | |- A e. _V |
|
bnj610.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
bnj610.3 | |- ( x = y -> ( ph <-> ps' ) ) |
||
bnj610.4 | |- ( y = A -> ( ps' <-> ps ) ) |
||
Assertion | bnj610 | |- ( [. A / x ]. ph <-> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj610.1 | |- A e. _V |
|
2 | bnj610.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
3 | bnj610.3 | |- ( x = y -> ( ph <-> ps' ) ) |
|
4 | bnj610.4 | |- ( y = A -> ( ps' <-> ps ) ) |
|
5 | vex | |- y e. _V |
|
6 | 5 3 | sbcie | |- ( [. y / x ]. ph <-> ps' ) |
7 | 6 | sbcbii | |- ( [. A / y ]. [. y / x ]. ph <-> [. A / y ]. ps' ) |
8 | sbccow | |- ( [. A / y ]. [. y / x ]. ph <-> [. A / x ]. ph ) |
|
9 | 1 4 | sbcie | |- ( [. A / y ]. ps' <-> ps ) |
10 | 7 8 9 | 3bitr3i | |- ( [. A / x ]. ph <-> ps ) |