Metamath Proof Explorer


Theorem bnj707

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj707.1
|- ( ch -> ta )
Assertion bnj707
|- ( ( ph /\ ps /\ ch /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 bnj707.1
 |-  ( ch -> ta )
2 bnj258
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ th ) /\ ch ) )
3 2 simprbi
 |-  ( ( ph /\ ps /\ ch /\ th ) -> ch )
4 3 1 syl
 |-  ( ( ph /\ ps /\ ch /\ th ) -> ta )