Metamath Proof Explorer


Theorem bnj721

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj721.1
|- ( ( ph /\ ps /\ ch ) -> ta )
Assertion bnj721
|- ( ( ph /\ ps /\ ch /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 bnj721.1
 |-  ( ( ph /\ ps /\ ch ) -> ta )
2 bnj658
 |-  ( ( ph /\ ps /\ ch /\ th ) -> ( ph /\ ps /\ ch ) )
3 2 1 syl
 |-  ( ( ph /\ ps /\ ch /\ th ) -> ta )