Metamath Proof Explorer


Theorem bnj770

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj770.1
|- ( et <-> ( ph /\ ps /\ ch /\ th ) )
bnj770.2
|- ( ps -> ta )
Assertion bnj770
|- ( et -> ta )

Proof

Step Hyp Ref Expression
1 bnj770.1
 |-  ( et <-> ( ph /\ ps /\ ch /\ th ) )
2 bnj770.2
 |-  ( ps -> ta )
3 2 bnj706
 |-  ( ( ph /\ ps /\ ch /\ th ) -> ta )
4 1 3 sylbi
 |-  ( et -> ta )