Metamath Proof Explorer


Theorem bnj771

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj771.1
|- ( et <-> ( ph /\ ps /\ ch /\ th ) )
bnj771.2
|- ( ch -> ta )
Assertion bnj771
|- ( et -> ta )

Proof

Step Hyp Ref Expression
1 bnj771.1
 |-  ( et <-> ( ph /\ ps /\ ch /\ th ) )
2 bnj771.2
 |-  ( ch -> ta )
3 2 bnj707
 |-  ( ( ph /\ ps /\ ch /\ th ) -> ta )
4 1 3 sylbi
 |-  ( et -> ta )