Metamath Proof Explorer


Theorem bnj832

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj832.1
|- ( et <-> ( ph /\ ps ) )
bnj832.2
|- ( ph -> ta )
Assertion bnj832
|- ( et -> ta )

Proof

Step Hyp Ref Expression
1 bnj832.1
 |-  ( et <-> ( ph /\ ps ) )
2 bnj832.2
 |-  ( ph -> ta )
3 2 adantr
 |-  ( ( ph /\ ps ) -> ta )
4 1 3 sylbi
 |-  ( et -> ta )