Step |
Hyp |
Ref |
Expression |
1 |
|
bnj849.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj849.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj849.3 |
|- D = ( _om \ { (/) } ) |
4 |
|
bnj849.4 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
5 |
|
bnj849.5 |
|- ( ch <-> ( R _FrSe A /\ X e. A /\ n e. D ) ) |
6 |
|
bnj849.6 |
|- ( th <-> ( f Fn n /\ ph /\ ps ) ) |
7 |
|
bnj849.7 |
|- ( ph' <-> [. g / f ]. ph ) |
8 |
|
bnj849.8 |
|- ( ps' <-> [. g / f ]. ps ) |
9 |
|
bnj849.9 |
|- ( th' <-> [. g / f ]. th ) |
10 |
|
bnj849.10 |
|- ( ta <-> ( R _FrSe A /\ X e. A ) ) |
11 |
1 2 3 5 6
|
bnj865 |
|- E. w A. n ( ch -> E. f e. w th ) |
12 |
4 7 8
|
bnj873 |
|- B = { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } |
13 |
|
df-rex |
|- ( E. n e. D ( g Fn n /\ ph' /\ ps' ) <-> E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) |
14 |
|
19.29 |
|- ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) |
15 |
|
an12 |
|- ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) <-> ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) |
16 |
|
df-3an |
|- ( ( R _FrSe A /\ X e. A /\ n e. D ) <-> ( ( R _FrSe A /\ X e. A ) /\ n e. D ) ) |
17 |
10
|
anbi1i |
|- ( ( ta /\ n e. D ) <-> ( ( R _FrSe A /\ X e. A ) /\ n e. D ) ) |
18 |
16 5 17
|
3bitr4i |
|- ( ch <-> ( ta /\ n e. D ) ) |
19 |
|
id |
|- ( ch -> ch ) |
20 |
6 7 8 9
|
bnj581 |
|- ( th' <-> ( g Fn n /\ ph' /\ ps' ) ) |
21 |
9 20
|
bitr3i |
|- ( [. g / f ]. th <-> ( g Fn n /\ ph' /\ ps' ) ) |
22 |
1 2 3 5 6
|
bnj864 |
|- ( ch -> E! f th ) |
23 |
|
df-rex |
|- ( E. f e. w th <-> E. f ( f e. w /\ th ) ) |
24 |
|
exancom |
|- ( E. f ( f e. w /\ th ) <-> E. f ( th /\ f e. w ) ) |
25 |
23 24
|
sylbb |
|- ( E. f e. w th -> E. f ( th /\ f e. w ) ) |
26 |
|
nfeu1 |
|- F/ f E! f th |
27 |
|
nfe1 |
|- F/ f E. f ( th /\ f e. w ) |
28 |
26 27
|
nfan |
|- F/ f ( E! f th /\ E. f ( th /\ f e. w ) ) |
29 |
|
nfsbc1v |
|- F/ f [. g / f ]. th |
30 |
|
nfv |
|- F/ f g e. w |
31 |
29 30
|
nfim |
|- F/ f ( [. g / f ]. th -> g e. w ) |
32 |
28 31
|
nfim |
|- F/ f ( ( E! f th /\ E. f ( th /\ f e. w ) ) -> ( [. g / f ]. th -> g e. w ) ) |
33 |
|
sbceq1a |
|- ( f = g -> ( th <-> [. g / f ]. th ) ) |
34 |
|
elequ1 |
|- ( f = g -> ( f e. w <-> g e. w ) ) |
35 |
33 34
|
imbi12d |
|- ( f = g -> ( ( th -> f e. w ) <-> ( [. g / f ]. th -> g e. w ) ) ) |
36 |
35
|
imbi2d |
|- ( f = g -> ( ( ( E! f th /\ E. f ( th /\ f e. w ) ) -> ( th -> f e. w ) ) <-> ( ( E! f th /\ E. f ( th /\ f e. w ) ) -> ( [. g / f ]. th -> g e. w ) ) ) ) |
37 |
|
eupick |
|- ( ( E! f th /\ E. f ( th /\ f e. w ) ) -> ( th -> f e. w ) ) |
38 |
32 36 37
|
chvarfv |
|- ( ( E! f th /\ E. f ( th /\ f e. w ) ) -> ( [. g / f ]. th -> g e. w ) ) |
39 |
22 25 38
|
syl2an |
|- ( ( ch /\ E. f e. w th ) -> ( [. g / f ]. th -> g e. w ) ) |
40 |
21 39
|
syl5bir |
|- ( ( ch /\ E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) |
41 |
40
|
ex |
|- ( ch -> ( E. f e. w th -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) |
42 |
19 41
|
embantd |
|- ( ch -> ( ( ch -> E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) |
43 |
42
|
impd |
|- ( ch -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) |
44 |
18 43
|
sylbir |
|- ( ( ta /\ n e. D ) -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) |
45 |
44
|
expimpd |
|- ( ta -> ( ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) |
46 |
15 45
|
syl5bi |
|- ( ta -> ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) |
47 |
46
|
exlimdv |
|- ( ta -> ( E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) |
48 |
14 47
|
syl5 |
|- ( ta -> ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) |
49 |
48
|
expdimp |
|- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) |
50 |
13 49
|
syl5bi |
|- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n e. D ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) |
51 |
50
|
abssdv |
|- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } C_ w ) |
52 |
12 51
|
eqsstrid |
|- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> B C_ w ) |
53 |
|
vex |
|- w e. _V |
54 |
53
|
ssex |
|- ( B C_ w -> B e. _V ) |
55 |
52 54
|
syl |
|- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> B e. _V ) |
56 |
55
|
ex |
|- ( ta -> ( A. n ( ch -> E. f e. w th ) -> B e. _V ) ) |
57 |
56
|
exlimdv |
|- ( ta -> ( E. w A. n ( ch -> E. f e. w th ) -> B e. _V ) ) |
58 |
11 57
|
mpi |
|- ( ta -> B e. _V ) |
59 |
10 58
|
sylbir |
|- ( ( R _FrSe A /\ X e. A ) -> B e. _V ) |