Step |
Hyp |
Ref |
Expression |
1 |
|
bnj873.4 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
2 |
|
bnj873.7 |
|- ( ph' <-> [. g / f ]. ph ) |
3 |
|
bnj873.8 |
|- ( ps' <-> [. g / f ]. ps ) |
4 |
|
nfv |
|- F/ g E. n e. D ( f Fn n /\ ph /\ ps ) |
5 |
|
nfcv |
|- F/_ f D |
6 |
|
nfv |
|- F/ f g Fn n |
7 |
|
nfsbc1v |
|- F/ f [. g / f ]. ph |
8 |
2 7
|
nfxfr |
|- F/ f ph' |
9 |
|
nfsbc1v |
|- F/ f [. g / f ]. ps |
10 |
3 9
|
nfxfr |
|- F/ f ps' |
11 |
6 8 10
|
nf3an |
|- F/ f ( g Fn n /\ ph' /\ ps' ) |
12 |
5 11
|
nfrex |
|- F/ f E. n e. D ( g Fn n /\ ph' /\ ps' ) |
13 |
|
fneq1 |
|- ( f = g -> ( f Fn n <-> g Fn n ) ) |
14 |
|
sbceq1a |
|- ( f = g -> ( ph <-> [. g / f ]. ph ) ) |
15 |
14 2
|
bitr4di |
|- ( f = g -> ( ph <-> ph' ) ) |
16 |
|
sbceq1a |
|- ( f = g -> ( ps <-> [. g / f ]. ps ) ) |
17 |
16 3
|
bitr4di |
|- ( f = g -> ( ps <-> ps' ) ) |
18 |
13 15 17
|
3anbi123d |
|- ( f = g -> ( ( f Fn n /\ ph /\ ps ) <-> ( g Fn n /\ ph' /\ ps' ) ) ) |
19 |
18
|
rexbidv |
|- ( f = g -> ( E. n e. D ( f Fn n /\ ph /\ ps ) <-> E. n e. D ( g Fn n /\ ph' /\ ps' ) ) ) |
20 |
4 12 19
|
cbvabw |
|- { f | E. n e. D ( f Fn n /\ ph /\ ps ) } = { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } |
21 |
1 20
|
eqtri |
|- B = { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } |