Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bnj90.1 | |- Y e. _V |
|
Assertion | bnj90 | |- ( [. Y / x ]. z Fn x <-> z Fn Y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj90.1 | |- Y e. _V |
|
2 | fneq2 | |- ( x = y -> ( z Fn x <-> z Fn y ) ) |
|
3 | fneq2 | |- ( y = Y -> ( z Fn y <-> z Fn Y ) ) |
|
4 | 2 3 | sbcie2g | |- ( Y e. _V -> ( [. Y / x ]. z Fn x <-> z Fn Y ) ) |
5 | 1 4 | ax-mp | |- ( [. Y / x ]. z Fn x <-> z Fn Y ) |