Metamath Proof Explorer


Theorem bnj90

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypothesis bnj90.1
|- Y e. _V
Assertion bnj90
|- ( [. Y / x ]. z Fn x <-> z Fn Y )

Proof

Step Hyp Ref Expression
1 bnj90.1
 |-  Y e. _V
2 fneq2
 |-  ( x = y -> ( z Fn x <-> z Fn y ) )
3 fneq2
 |-  ( y = Y -> ( z Fn y <-> z Fn Y ) )
4 2 3 sbcie2g
 |-  ( Y e. _V -> ( [. Y / x ]. z Fn x <-> z Fn Y ) )
5 1 4 ax-mp
 |-  ( [. Y / x ]. z Fn x <-> z Fn Y )