Metamath Proof Explorer


Theorem bnj900

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj900.3
|- D = ( _om \ { (/) } )
bnj900.4
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
Assertion bnj900
|- ( f e. B -> (/) e. dom f )

Proof

Step Hyp Ref Expression
1 bnj900.3
 |-  D = ( _om \ { (/) } )
2 bnj900.4
 |-  B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
3 2 bnj1436
 |-  ( f e. B -> E. n e. D ( f Fn n /\ ph /\ ps ) )
4 simp1
 |-  ( ( f Fn n /\ ph /\ ps ) -> f Fn n )
5 4 reximi
 |-  ( E. n e. D ( f Fn n /\ ph /\ ps ) -> E. n e. D f Fn n )
6 fndm
 |-  ( f Fn n -> dom f = n )
7 6 reximi
 |-  ( E. n e. D f Fn n -> E. n e. D dom f = n )
8 3 5 7 3syl
 |-  ( f e. B -> E. n e. D dom f = n )
9 8 bnj1196
 |-  ( f e. B -> E. n ( n e. D /\ dom f = n ) )
10 nfre1
 |-  F/ n E. n e. D ( f Fn n /\ ph /\ ps )
11 10 nfab
 |-  F/_ n { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
12 2 11 nfcxfr
 |-  F/_ n B
13 12 nfcri
 |-  F/ n f e. B
14 13 19.37
 |-  ( E. n ( f e. B -> ( n e. D /\ dom f = n ) ) <-> ( f e. B -> E. n ( n e. D /\ dom f = n ) ) )
15 9 14 mpbir
 |-  E. n ( f e. B -> ( n e. D /\ dom f = n ) )
16 nfv
 |-  F/ n (/) e. dom f
17 13 16 nfim
 |-  F/ n ( f e. B -> (/) e. dom f )
18 1 bnj529
 |-  ( n e. D -> (/) e. n )
19 eleq2
 |-  ( dom f = n -> ( (/) e. dom f <-> (/) e. n ) )
20 19 biimparc
 |-  ( ( (/) e. n /\ dom f = n ) -> (/) e. dom f )
21 18 20 sylan
 |-  ( ( n e. D /\ dom f = n ) -> (/) e. dom f )
22 21 imim2i
 |-  ( ( f e. B -> ( n e. D /\ dom f = n ) ) -> ( f e. B -> (/) e. dom f ) )
23 17 22 exlimi
 |-  ( E. n ( f e. B -> ( n e. D /\ dom f = n ) ) -> ( f e. B -> (/) e. dom f ) )
24 15 23 ax-mp
 |-  ( f e. B -> (/) e. dom f )