Step |
Hyp |
Ref |
Expression |
1 |
|
1onn |
|- 1o e. _om |
2 |
|
1n0 |
|- 1o =/= (/) |
3 |
|
eldifsn |
|- ( 1o e. ( _om \ { (/) } ) <-> ( 1o e. _om /\ 1o =/= (/) ) ) |
4 |
1 2 3
|
mpbir2an |
|- 1o e. ( _om \ { (/) } ) |
5 |
4
|
ne0ii |
|- ( _om \ { (/) } ) =/= (/) |
6 |
|
biid |
|- ( ( f ` (/) ) = _pred ( X , A , R ) <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
7 |
|
biid |
|- ( A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
8 |
|
eqid |
|- ( _om \ { (/) } ) = ( _om \ { (/) } ) |
9 |
6 7 8
|
bnj852 |
|- ( ( R _FrSe A /\ X e. A ) -> A. n e. ( _om \ { (/) } ) E! f ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
10 |
|
r19.2z |
|- ( ( ( _om \ { (/) } ) =/= (/) /\ A. n e. ( _om \ { (/) } ) E! f ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) -> E. n e. ( _om \ { (/) } ) E! f ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
11 |
5 9 10
|
sylancr |
|- ( ( R _FrSe A /\ X e. A ) -> E. n e. ( _om \ { (/) } ) E! f ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
12 |
|
euex |
|- ( E! f ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) -> E. f ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
13 |
11 12
|
bnj31 |
|- ( ( R _FrSe A /\ X e. A ) -> E. n e. ( _om \ { (/) } ) E. f ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
14 |
|
rexcom4 |
|- ( E. n e. ( _om \ { (/) } ) E. f ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) <-> E. f E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
15 |
13 14
|
sylib |
|- ( ( R _FrSe A /\ X e. A ) -> E. f E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
16 |
|
abid |
|- ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } <-> E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) |
17 |
15 16
|
bnj1198 |
|- ( ( R _FrSe A /\ X e. A ) -> E. f f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } ) |
18 |
|
simp2 |
|- ( ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) -> ( f ` (/) ) = _pred ( X , A , R ) ) |
19 |
18
|
reximi |
|- ( E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) -> E. n e. ( _om \ { (/) } ) ( f ` (/) ) = _pred ( X , A , R ) ) |
20 |
16 19
|
sylbi |
|- ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> E. n e. ( _om \ { (/) } ) ( f ` (/) ) = _pred ( X , A , R ) ) |
21 |
|
df-rex |
|- ( E. n e. ( _om \ { (/) } ) ( f ` (/) ) = _pred ( X , A , R ) <-> E. n ( n e. ( _om \ { (/) } ) /\ ( f ` (/) ) = _pred ( X , A , R ) ) ) |
22 |
|
19.41v |
|- ( E. n ( n e. ( _om \ { (/) } ) /\ ( f ` (/) ) = _pred ( X , A , R ) ) <-> ( E. n n e. ( _om \ { (/) } ) /\ ( f ` (/) ) = _pred ( X , A , R ) ) ) |
23 |
22
|
simprbi |
|- ( E. n ( n e. ( _om \ { (/) } ) /\ ( f ` (/) ) = _pred ( X , A , R ) ) -> ( f ` (/) ) = _pred ( X , A , R ) ) |
24 |
21 23
|
sylbi |
|- ( E. n e. ( _om \ { (/) } ) ( f ` (/) ) = _pred ( X , A , R ) -> ( f ` (/) ) = _pred ( X , A , R ) ) |
25 |
20 24
|
syl |
|- ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> ( f ` (/) ) = _pred ( X , A , R ) ) |
26 |
|
eqid |
|- { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } = { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } |
27 |
8 26
|
bnj900 |
|- ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> (/) e. dom f ) |
28 |
|
fveq2 |
|- ( i = (/) -> ( f ` i ) = ( f ` (/) ) ) |
29 |
28
|
ssiun2s |
|- ( (/) e. dom f -> ( f ` (/) ) C_ U_ i e. dom f ( f ` i ) ) |
30 |
27 29
|
syl |
|- ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> ( f ` (/) ) C_ U_ i e. dom f ( f ` i ) ) |
31 |
|
ssiun2 |
|- ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> U_ i e. dom f ( f ` i ) C_ U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) ) |
32 |
6 7 8 26
|
bnj882 |
|- _trCl ( X , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |
33 |
31 32
|
sseqtrrdi |
|- ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> U_ i e. dom f ( f ` i ) C_ _trCl ( X , A , R ) ) |
34 |
30 33
|
sstrd |
|- ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> ( f ` (/) ) C_ _trCl ( X , A , R ) ) |
35 |
25 34
|
eqsstrrd |
|- ( f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> _pred ( X , A , R ) C_ _trCl ( X , A , R ) ) |
36 |
35
|
exlimiv |
|- ( E. f f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } -> _pred ( X , A , R ) C_ _trCl ( X , A , R ) ) |
37 |
17 36
|
syl |
|- ( ( R _FrSe A /\ X e. A ) -> _pred ( X , A , R ) C_ _trCl ( X , A , R ) ) |