Step |
Hyp |
Ref |
Expression |
1 |
|
bnj908.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
2 |
|
bnj908.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj908.3 |
|- D = ( _om \ { (/) } ) |
4 |
|
bnj908.4 |
|- ( ch <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn n /\ ph /\ ps ) ) ) |
5 |
|
bnj908.5 |
|- ( th <-> A. m e. D ( m _E n -> [. m / n ]. ch ) ) |
6 |
|
bnj908.10 |
|- ( ph' <-> [. m / n ]. ph ) |
7 |
|
bnj908.11 |
|- ( ps' <-> [. m / n ]. ps ) |
8 |
|
bnj908.12 |
|- ( ch' <-> [. m / n ]. ch ) |
9 |
|
bnj908.13 |
|- ( ph" <-> [. G / f ]. ph ) |
10 |
|
bnj908.14 |
|- ( ps" <-> [. G / f ]. ps ) |
11 |
|
bnj908.15 |
|- ( ch" <-> [. G / f ]. ch ) |
12 |
|
bnj908.16 |
|- G = ( f u. { <. m , U_ y e. ( f ` p ) _pred ( y , A , R ) >. } ) |
13 |
|
bnj908.17 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
14 |
|
bnj908.18 |
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
15 |
|
bnj908.19 |
|- ( et <-> ( m e. D /\ n = suc m /\ p e. _om /\ m = suc p ) ) |
16 |
|
bnj908.20 |
|- ( ze <-> ( i e. _om /\ suc i e. n /\ m = suc i ) ) |
17 |
|
bnj908.21 |
|- ( rh <-> ( i e. _om /\ suc i e. n /\ m =/= suc i ) ) |
18 |
|
bnj908.22 |
|- B = U_ y e. ( f ` i ) _pred ( y , A , R ) |
19 |
|
bnj908.23 |
|- C = U_ y e. ( f ` p ) _pred ( y , A , R ) |
20 |
|
bnj908.24 |
|- K = U_ y e. ( G ` i ) _pred ( y , A , R ) |
21 |
|
bnj908.25 |
|- L = U_ y e. ( G ` p ) _pred ( y , A , R ) |
22 |
|
bnj908.26 |
|- G = ( f u. { <. m , C >. } ) |
23 |
|
bnj248 |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) <-> ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) /\ et ) ) |
24 |
|
vex |
|- m e. _V |
25 |
4 6 7 8 24
|
bnj207 |
|- ( ch' <-> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) ) |
26 |
25
|
biimpi |
|- ( ch' -> ( ( R _FrSe A /\ x e. A ) -> E! f ( f Fn m /\ ph' /\ ps' ) ) ) |
27 |
|
euex |
|- ( E! f ( f Fn m /\ ph' /\ ps' ) -> E. f ( f Fn m /\ ph' /\ ps' ) ) |
28 |
26 27
|
syl6 |
|- ( ch' -> ( ( R _FrSe A /\ x e. A ) -> E. f ( f Fn m /\ ph' /\ ps' ) ) ) |
29 |
28
|
impcom |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) -> E. f ( f Fn m /\ ph' /\ ps' ) ) |
30 |
29 13
|
bnj1198 |
|- ( ( ( R _FrSe A /\ x e. A ) /\ ch' ) -> E. f ta ) |
31 |
23 30
|
bnj832 |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> E. f ta ) |
32 |
|
bnj645 |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> et ) |
33 |
|
19.41v |
|- ( E. f ( ta /\ et ) <-> ( E. f ta /\ et ) ) |
34 |
31 32 33
|
sylanbrc |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> E. f ( ta /\ et ) ) |
35 |
|
bnj642 |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> R _FrSe A ) |
36 |
|
19.41v |
|- ( E. f ( ( ta /\ et ) /\ R _FrSe A ) <-> ( E. f ( ta /\ et ) /\ R _FrSe A ) ) |
37 |
34 35 36
|
sylanbrc |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> E. f ( ( ta /\ et ) /\ R _FrSe A ) ) |
38 |
|
bnj170 |
|- ( ( R _FrSe A /\ ta /\ et ) <-> ( ( ta /\ et ) /\ R _FrSe A ) ) |
39 |
37 38
|
bnj1198 |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> E. f ( R _FrSe A /\ ta /\ et ) ) |
40 |
1 6 24
|
bnj523 |
|- ( ph' <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
41 |
2 7 24
|
bnj539 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
42 |
40 41 3 12 13 14
|
bnj544 |
|- ( ( R _FrSe A /\ ta /\ si ) -> G Fn n ) |
43 |
14 15 42
|
bnj561 |
|- ( ( R _FrSe A /\ ta /\ et ) -> G Fn n ) |
44 |
12
|
bnj528 |
|- G e. _V |
45 |
1 9 44
|
bnj609 |
|- ( ph" <-> ( G ` (/) ) = _pred ( x , A , R ) ) |
46 |
40 3 12 13 14 42 45
|
bnj545 |
|- ( ( R _FrSe A /\ ta /\ si ) -> ph" ) |
47 |
14 15 46
|
bnj562 |
|- ( ( R _FrSe A /\ ta /\ et ) -> ph" ) |
48 |
2 10 44
|
bnj611 |
|- ( ps" <-> A. i e. _om ( suc i e. n -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) |
49 |
3 12 13 14 15 16 18 19 20 21 22 40 41 42 17 43 48
|
bnj571 |
|- ( ( R _FrSe A /\ ta /\ et ) -> ps" ) |
50 |
43 47 49
|
3jca |
|- ( ( R _FrSe A /\ ta /\ et ) -> ( G Fn n /\ ph" /\ ps" ) ) |
51 |
39 50
|
bnj593 |
|- ( ( R _FrSe A /\ x e. A /\ ch' /\ et ) -> E. f ( G Fn n /\ ph" /\ ps" ) ) |