Metamath Proof Explorer


Theorem bnj911

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj911.1
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )
bnj911.2
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
Assertion bnj911
|- ( ( f Fn n /\ ph /\ ps ) -> A. i ( f Fn n /\ ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 bnj911.1
 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )
2 bnj911.2
 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )
3 2 bnj1095
 |-  ( ps -> A. i ps )
4 3 bnj1350
 |-  ( ( f Fn n /\ ph /\ ps ) -> A. i ( f Fn n /\ ph /\ ps ) )