Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj911.1 | |- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
|
bnj911.2 | |- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
||
Assertion | bnj911 | |- ( ( f Fn n /\ ph /\ ps ) -> A. i ( f Fn n /\ ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj911.1 | |- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
|
2 | bnj911.2 | |- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
|
3 | 2 | bnj1095 | |- ( ps -> A. i ps ) |
4 | 3 | bnj1350 | |- ( ( f Fn n /\ ph /\ ps ) -> A. i ( f Fn n /\ ph /\ ps ) ) |