Metamath Proof Explorer


Theorem bnj918

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj918.1
|- G = ( f u. { <. n , C >. } )
Assertion bnj918
|- G e. _V

Proof

Step Hyp Ref Expression
1 bnj918.1
 |-  G = ( f u. { <. n , C >. } )
2 vex
 |-  f e. _V
3 snex
 |-  { <. n , C >. } e. _V
4 2 3 unex
 |-  ( f u. { <. n , C >. } ) e. _V
5 1 4 eqeltri
 |-  G e. _V