Step |
Hyp |
Ref |
Expression |
1 |
|
bnj927.1 |
|- G = ( f u. { <. n , C >. } ) |
2 |
|
bnj927.2 |
|- C e. _V |
3 |
|
simpr |
|- ( ( p = suc n /\ f Fn n ) -> f Fn n ) |
4 |
|
vex |
|- n e. _V |
5 |
4 2
|
fnsn |
|- { <. n , C >. } Fn { n } |
6 |
5
|
a1i |
|- ( ( p = suc n /\ f Fn n ) -> { <. n , C >. } Fn { n } ) |
7 |
|
bnj521 |
|- ( n i^i { n } ) = (/) |
8 |
7
|
a1i |
|- ( ( p = suc n /\ f Fn n ) -> ( n i^i { n } ) = (/) ) |
9 |
3 6 8
|
fnund |
|- ( ( p = suc n /\ f Fn n ) -> ( f u. { <. n , C >. } ) Fn ( n u. { n } ) ) |
10 |
1
|
fneq1i |
|- ( G Fn ( n u. { n } ) <-> ( f u. { <. n , C >. } ) Fn ( n u. { n } ) ) |
11 |
9 10
|
sylibr |
|- ( ( p = suc n /\ f Fn n ) -> G Fn ( n u. { n } ) ) |
12 |
|
df-suc |
|- suc n = ( n u. { n } ) |
13 |
12
|
eqeq2i |
|- ( p = suc n <-> p = ( n u. { n } ) ) |
14 |
13
|
biimpi |
|- ( p = suc n -> p = ( n u. { n } ) ) |
15 |
14
|
adantr |
|- ( ( p = suc n /\ f Fn n ) -> p = ( n u. { n } ) ) |
16 |
15
|
fneq2d |
|- ( ( p = suc n /\ f Fn n ) -> ( G Fn p <-> G Fn ( n u. { n } ) ) ) |
17 |
11 16
|
mpbird |
|- ( ( p = suc n /\ f Fn n ) -> G Fn p ) |