Step |
Hyp |
Ref |
Expression |
1 |
|
bnj929.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj929.4 |
|- ( ph' <-> [. p / n ]. ph ) |
3 |
|
bnj929.7 |
|- ( ph" <-> [. G / f ]. ph' ) |
4 |
|
bnj929.10 |
|- D = ( _om \ { (/) } ) |
5 |
|
bnj929.13 |
|- G = ( f u. { <. n , C >. } ) |
6 |
|
bnj929.50 |
|- C e. _V |
7 |
|
bnj645 |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph ) |
8 |
|
bnj334 |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) <-> ( f Fn n /\ n e. D /\ p = suc n /\ ph ) ) |
9 |
|
bnj257 |
|- ( ( f Fn n /\ n e. D /\ p = suc n /\ ph ) <-> ( f Fn n /\ n e. D /\ ph /\ p = suc n ) ) |
10 |
8 9
|
bitri |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) <-> ( f Fn n /\ n e. D /\ ph /\ p = suc n ) ) |
11 |
|
bnj345 |
|- ( ( f Fn n /\ n e. D /\ ph /\ p = suc n ) <-> ( p = suc n /\ f Fn n /\ n e. D /\ ph ) ) |
12 |
|
bnj253 |
|- ( ( p = suc n /\ f Fn n /\ n e. D /\ ph ) <-> ( ( p = suc n /\ f Fn n ) /\ n e. D /\ ph ) ) |
13 |
10 11 12
|
3bitri |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) <-> ( ( p = suc n /\ f Fn n ) /\ n e. D /\ ph ) ) |
14 |
13
|
simp1bi |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ( p = suc n /\ f Fn n ) ) |
15 |
5 6
|
bnj927 |
|- ( ( p = suc n /\ f Fn n ) -> G Fn p ) |
16 |
15
|
fnfund |
|- ( ( p = suc n /\ f Fn n ) -> Fun G ) |
17 |
14 16
|
syl |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> Fun G ) |
18 |
5
|
bnj931 |
|- f C_ G |
19 |
18
|
a1i |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> f C_ G ) |
20 |
|
bnj268 |
|- ( ( n e. D /\ f Fn n /\ p = suc n /\ ph ) <-> ( n e. D /\ p = suc n /\ f Fn n /\ ph ) ) |
21 |
|
bnj253 |
|- ( ( n e. D /\ f Fn n /\ p = suc n /\ ph ) <-> ( ( n e. D /\ f Fn n ) /\ p = suc n /\ ph ) ) |
22 |
20 21
|
bitr3i |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) <-> ( ( n e. D /\ f Fn n ) /\ p = suc n /\ ph ) ) |
23 |
22
|
simp1bi |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ( n e. D /\ f Fn n ) ) |
24 |
|
fndm |
|- ( f Fn n -> dom f = n ) |
25 |
4
|
bnj529 |
|- ( n e. D -> (/) e. n ) |
26 |
|
eleq2 |
|- ( dom f = n -> ( (/) e. dom f <-> (/) e. n ) ) |
27 |
26
|
biimpar |
|- ( ( dom f = n /\ (/) e. n ) -> (/) e. dom f ) |
28 |
24 25 27
|
syl2anr |
|- ( ( n e. D /\ f Fn n ) -> (/) e. dom f ) |
29 |
23 28
|
syl |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> (/) e. dom f ) |
30 |
17 19 29
|
bnj1502 |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ( G ` (/) ) = ( f ` (/) ) ) |
31 |
5
|
bnj918 |
|- G e. _V |
32 |
1 2 3 31
|
bnj934 |
|- ( ( ph /\ ( G ` (/) ) = ( f ` (/) ) ) -> ph" ) |
33 |
7 30 32
|
syl2anc |
|- ( ( n e. D /\ p = suc n /\ f Fn n /\ ph ) -> ph" ) |