Metamath Proof Explorer


Theorem bnj93

Description: Technical lemma for bnj97 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj93
|- ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) e. _V )

Proof

Step Hyp Ref Expression
1 df-bnj15
 |-  ( R _FrSe A <-> ( R Fr A /\ R _Se A ) )
2 1 simprbi
 |-  ( R _FrSe A -> R _Se A )
3 df-bnj13
 |-  ( R _Se A <-> A. x e. A _pred ( x , A , R ) e. _V )
4 2 3 sylib
 |-  ( R _FrSe A -> A. x e. A _pred ( x , A , R ) e. _V )
5 4 r19.21bi
 |-  ( ( R _FrSe A /\ x e. A ) -> _pred ( x , A , R ) e. _V )