Step |
Hyp |
Ref |
Expression |
1 |
|
bnj934.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj934.4 |
|- ( ph' <-> [. p / n ]. ph ) |
3 |
|
bnj934.7 |
|- ( ph" <-> [. G / f ]. ph' ) |
4 |
|
bnj934.50 |
|- G e. _V |
5 |
|
eqtr |
|- ( ( ( G ` (/) ) = ( f ` (/) ) /\ ( f ` (/) ) = _pred ( X , A , R ) ) -> ( G ` (/) ) = _pred ( X , A , R ) ) |
6 |
1 5
|
sylan2b |
|- ( ( ( G ` (/) ) = ( f ` (/) ) /\ ph ) -> ( G ` (/) ) = _pred ( X , A , R ) ) |
7 |
|
vex |
|- p e. _V |
8 |
1 2 7
|
bnj523 |
|- ( ph' <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
9 |
8 1
|
bitr4i |
|- ( ph' <-> ph ) |
10 |
9
|
sbcbii |
|- ( [. G / f ]. ph' <-> [. G / f ]. ph ) |
11 |
3 10
|
bitri |
|- ( ph" <-> [. G / f ]. ph ) |
12 |
1 11 4
|
bnj609 |
|- ( ph" <-> ( G ` (/) ) = _pred ( X , A , R ) ) |
13 |
6 12
|
sylibr |
|- ( ( ( G ` (/) ) = ( f ` (/) ) /\ ph ) -> ph" ) |
14 |
13
|
ancoms |
|- ( ( ph /\ ( G ` (/) ) = ( f ` (/) ) ) -> ph" ) |