Step |
Hyp |
Ref |
Expression |
1 |
|
bnj938.1 |
|- D = ( _om \ { (/) } ) |
2 |
|
bnj938.2 |
|- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) |
3 |
|
bnj938.3 |
|- ( si <-> ( m e. D /\ n = suc m /\ p e. m ) ) |
4 |
|
bnj938.4 |
|- ( ph' <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
5 |
|
bnj938.5 |
|- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
6 |
|
elisset |
|- ( X e. A -> E. x x = X ) |
7 |
6
|
bnj706 |
|- ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> E. x x = X ) |
8 |
|
bnj291 |
|- ( ( R _FrSe A /\ X e. A /\ ta /\ si ) <-> ( ( R _FrSe A /\ ta /\ si ) /\ X e. A ) ) |
9 |
8
|
simplbi |
|- ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> ( R _FrSe A /\ ta /\ si ) ) |
10 |
|
bnj602 |
|- ( x = X -> _pred ( x , A , R ) = _pred ( X , A , R ) ) |
11 |
10
|
eqeq2d |
|- ( x = X -> ( ( f ` (/) ) = _pred ( x , A , R ) <-> ( f ` (/) ) = _pred ( X , A , R ) ) ) |
12 |
11 4
|
bitr4di |
|- ( x = X -> ( ( f ` (/) ) = _pred ( x , A , R ) <-> ph' ) ) |
13 |
12
|
3anbi2d |
|- ( x = X -> ( ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) <-> ( f Fn m /\ ph' /\ ps' ) ) ) |
14 |
13 2
|
bitr4di |
|- ( x = X -> ( ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) <-> ta ) ) |
15 |
14
|
3anbi2d |
|- ( x = X -> ( ( R _FrSe A /\ ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) /\ si ) <-> ( R _FrSe A /\ ta /\ si ) ) ) |
16 |
9 15
|
syl5ibr |
|- ( x = X -> ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> ( R _FrSe A /\ ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) /\ si ) ) ) |
17 |
|
biid |
|- ( ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) <-> ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) ) |
18 |
|
biid |
|- ( ( f ` (/) ) = _pred ( x , A , R ) <-> ( f ` (/) ) = _pred ( x , A , R ) ) |
19 |
1 17 3 18 5
|
bnj546 |
|- ( ( R _FrSe A /\ ( f Fn m /\ ( f ` (/) ) = _pred ( x , A , R ) /\ ps' ) /\ si ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |
20 |
16 19
|
syl6 |
|- ( x = X -> ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) ) |
21 |
20
|
exlimiv |
|- ( E. x x = X -> ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) ) |
22 |
7 21
|
mpcom |
|- ( ( R _FrSe A /\ X e. A /\ ta /\ si ) -> U_ y e. ( f ` p ) _pred ( y , A , R ) e. _V ) |