Step |
Hyp |
Ref |
Expression |
1 |
|
bnj945.1 |
|- G = ( f u. { <. n , C >. } ) |
2 |
|
fndm |
|- ( f Fn n -> dom f = n ) |
3 |
2
|
ad2antll |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> dom f = n ) |
4 |
3
|
eleq2d |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> ( A e. dom f <-> A e. n ) ) |
5 |
4
|
pm5.32i |
|- ( ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. dom f ) <-> ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. n ) ) |
6 |
1
|
bnj941 |
|- ( C e. _V -> ( ( p = suc n /\ f Fn n ) -> G Fn p ) ) |
7 |
6
|
imp |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> G Fn p ) |
8 |
7
|
fnfund |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> Fun G ) |
9 |
1
|
bnj931 |
|- f C_ G |
10 |
8 9
|
jctir |
|- ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) -> ( Fun G /\ f C_ G ) ) |
11 |
10
|
anim1i |
|- ( ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. dom f ) -> ( ( Fun G /\ f C_ G ) /\ A e. dom f ) ) |
12 |
5 11
|
sylbir |
|- ( ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. n ) -> ( ( Fun G /\ f C_ G ) /\ A e. dom f ) ) |
13 |
|
df-bnj17 |
|- ( ( C e. _V /\ f Fn n /\ p = suc n /\ A e. n ) <-> ( ( C e. _V /\ f Fn n /\ p = suc n ) /\ A e. n ) ) |
14 |
|
3ancomb |
|- ( ( C e. _V /\ f Fn n /\ p = suc n ) <-> ( C e. _V /\ p = suc n /\ f Fn n ) ) |
15 |
|
3anass |
|- ( ( C e. _V /\ p = suc n /\ f Fn n ) <-> ( C e. _V /\ ( p = suc n /\ f Fn n ) ) ) |
16 |
14 15
|
bitri |
|- ( ( C e. _V /\ f Fn n /\ p = suc n ) <-> ( C e. _V /\ ( p = suc n /\ f Fn n ) ) ) |
17 |
16
|
anbi1i |
|- ( ( ( C e. _V /\ f Fn n /\ p = suc n ) /\ A e. n ) <-> ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. n ) ) |
18 |
13 17
|
bitri |
|- ( ( C e. _V /\ f Fn n /\ p = suc n /\ A e. n ) <-> ( ( C e. _V /\ ( p = suc n /\ f Fn n ) ) /\ A e. n ) ) |
19 |
|
df-3an |
|- ( ( Fun G /\ f C_ G /\ A e. dom f ) <-> ( ( Fun G /\ f C_ G ) /\ A e. dom f ) ) |
20 |
12 18 19
|
3imtr4i |
|- ( ( C e. _V /\ f Fn n /\ p = suc n /\ A e. n ) -> ( Fun G /\ f C_ G /\ A e. dom f ) ) |
21 |
|
funssfv |
|- ( ( Fun G /\ f C_ G /\ A e. dom f ) -> ( G ` A ) = ( f ` A ) ) |
22 |
20 21
|
syl |
|- ( ( C e. _V /\ f Fn n /\ p = suc n /\ A e. n ) -> ( G ` A ) = ( f ` A ) ) |