Metamath Proof Explorer


Theorem bnj946

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj946.1
|- ( ph <-> A. x e. A ps )
Assertion bnj946
|- ( ph <-> A. x ( x e. A -> ps ) )

Proof

Step Hyp Ref Expression
1 bnj946.1
 |-  ( ph <-> A. x e. A ps )
2 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
3 1 2 bitri
 |-  ( ph <-> A. x ( x e. A -> ps ) )