Metamath Proof Explorer


Theorem bnj951

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj951.1
|- ( ta -> ph )
bnj951.2
|- ( ta -> ps )
bnj951.3
|- ( ta -> ch )
bnj951.4
|- ( ta -> th )
Assertion bnj951
|- ( ta -> ( ph /\ ps /\ ch /\ th ) )

Proof

Step Hyp Ref Expression
1 bnj951.1
 |-  ( ta -> ph )
2 bnj951.2
 |-  ( ta -> ps )
3 bnj951.3
 |-  ( ta -> ch )
4 bnj951.4
 |-  ( ta -> th )
5 1 2 3 3jca
 |-  ( ta -> ( ph /\ ps /\ ch ) )
6 df-bnj17
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ ch ) /\ th ) )
7 5 4 6 sylanbrc
 |-  ( ta -> ( ph /\ ps /\ ch /\ th ) )