| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj953.1 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 2 |
|
bnj953.2 |
|- ( ( G ` i ) = ( f ` i ) -> A. y ( G ` i ) = ( f ` i ) ) |
| 3 |
|
bnj312 |
|- ( ( ( G ` i ) = ( f ` i ) /\ ( G ` suc i ) = ( f ` suc i ) /\ ( i e. _om /\ suc i e. n ) /\ ps ) <-> ( ( G ` suc i ) = ( f ` suc i ) /\ ( G ` i ) = ( f ` i ) /\ ( i e. _om /\ suc i e. n ) /\ ps ) ) |
| 4 |
|
bnj251 |
|- ( ( ( G ` suc i ) = ( f ` suc i ) /\ ( G ` i ) = ( f ` i ) /\ ( i e. _om /\ suc i e. n ) /\ ps ) <-> ( ( G ` suc i ) = ( f ` suc i ) /\ ( ( G ` i ) = ( f ` i ) /\ ( ( i e. _om /\ suc i e. n ) /\ ps ) ) ) ) |
| 5 |
3 4
|
bitri |
|- ( ( ( G ` i ) = ( f ` i ) /\ ( G ` suc i ) = ( f ` suc i ) /\ ( i e. _om /\ suc i e. n ) /\ ps ) <-> ( ( G ` suc i ) = ( f ` suc i ) /\ ( ( G ` i ) = ( f ` i ) /\ ( ( i e. _om /\ suc i e. n ) /\ ps ) ) ) ) |
| 6 |
1
|
bnj115 |
|- ( ps <-> A. i ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 7 |
|
sp |
|- ( A. i ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) -> ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
| 8 |
7
|
impcom |
|- ( ( ( i e. _om /\ suc i e. n ) /\ A. i ( ( i e. _om /\ suc i e. n ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
| 9 |
6 8
|
sylan2b |
|- ( ( ( i e. _om /\ suc i e. n ) /\ ps ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
| 10 |
2
|
bnj956 |
|- ( ( G ` i ) = ( f ` i ) -> U_ y e. ( G ` i ) _pred ( y , A , R ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
| 11 |
|
eqtr3 |
|- ( ( ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) /\ U_ y e. ( G ` i ) _pred ( y , A , R ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) -> ( f ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
| 12 |
9 10 11
|
syl2anr |
|- ( ( ( G ` i ) = ( f ` i ) /\ ( ( i e. _om /\ suc i e. n ) /\ ps ) ) -> ( f ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
| 13 |
|
eqtr |
|- ( ( ( G ` suc i ) = ( f ` suc i ) /\ ( f ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
| 14 |
12 13
|
sylan2 |
|- ( ( ( G ` suc i ) = ( f ` suc i ) /\ ( ( G ` i ) = ( f ` i ) /\ ( ( i e. _om /\ suc i e. n ) /\ ps ) ) ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
| 15 |
5 14
|
sylbi |
|- ( ( ( G ` i ) = ( f ` i ) /\ ( G ` suc i ) = ( f ` suc i ) /\ ( i e. _om /\ suc i e. n ) /\ ps ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |