Step |
Hyp |
Ref |
Expression |
1 |
|
bnj976.1 |
|- ( ch <-> ( N e. D /\ f Fn N /\ ph /\ ps ) ) |
2 |
|
bnj976.2 |
|- ( ph' <-> [. G / f ]. ph ) |
3 |
|
bnj976.3 |
|- ( ps' <-> [. G / f ]. ps ) |
4 |
|
bnj976.4 |
|- ( ch' <-> [. G / f ]. ch ) |
5 |
|
bnj976.5 |
|- G e. _V |
6 |
|
sbccow |
|- ( [. G / h ]. [. h / f ]. ch <-> [. G / f ]. ch ) |
7 |
|
bnj252 |
|- ( ( N e. D /\ f Fn N /\ ph /\ ps ) <-> ( N e. D /\ ( f Fn N /\ ph /\ ps ) ) ) |
8 |
7
|
sbcbii |
|- ( [. h / f ]. ( N e. D /\ f Fn N /\ ph /\ ps ) <-> [. h / f ]. ( N e. D /\ ( f Fn N /\ ph /\ ps ) ) ) |
9 |
1
|
sbcbii |
|- ( [. h / f ]. ch <-> [. h / f ]. ( N e. D /\ f Fn N /\ ph /\ ps ) ) |
10 |
|
vex |
|- h e. _V |
11 |
10
|
bnj525 |
|- ( [. h / f ]. N e. D <-> N e. D ) |
12 |
|
sbc3an |
|- ( [. h / f ]. ( f Fn N /\ ph /\ ps ) <-> ( [. h / f ]. f Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) ) |
13 |
|
bnj62 |
|- ( [. h / f ]. f Fn N <-> h Fn N ) |
14 |
13
|
3anbi1i |
|- ( ( [. h / f ]. f Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) <-> ( h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) ) |
15 |
12 14
|
bitri |
|- ( [. h / f ]. ( f Fn N /\ ph /\ ps ) <-> ( h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) ) |
16 |
11 15
|
anbi12i |
|- ( ( [. h / f ]. N e. D /\ [. h / f ]. ( f Fn N /\ ph /\ ps ) ) <-> ( N e. D /\ ( h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) ) ) |
17 |
|
sbcan |
|- ( [. h / f ]. ( N e. D /\ ( f Fn N /\ ph /\ ps ) ) <-> ( [. h / f ]. N e. D /\ [. h / f ]. ( f Fn N /\ ph /\ ps ) ) ) |
18 |
|
bnj252 |
|- ( ( N e. D /\ h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) <-> ( N e. D /\ ( h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) ) ) |
19 |
16 17 18
|
3bitr4ri |
|- ( ( N e. D /\ h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) <-> [. h / f ]. ( N e. D /\ ( f Fn N /\ ph /\ ps ) ) ) |
20 |
8 9 19
|
3bitr4i |
|- ( [. h / f ]. ch <-> ( N e. D /\ h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) ) |
21 |
|
fneq1 |
|- ( h = G -> ( h Fn N <-> G Fn N ) ) |
22 |
|
sbceq1a |
|- ( h = G -> ( [. h / f ]. ph <-> [. G / h ]. [. h / f ]. ph ) ) |
23 |
|
sbccow |
|- ( [. G / h ]. [. h / f ]. ph <-> [. G / f ]. ph ) |
24 |
2 23
|
bitr4i |
|- ( ph' <-> [. G / h ]. [. h / f ]. ph ) |
25 |
22 24
|
bitr4di |
|- ( h = G -> ( [. h / f ]. ph <-> ph' ) ) |
26 |
|
sbceq1a |
|- ( h = G -> ( [. h / f ]. ps <-> [. G / h ]. [. h / f ]. ps ) ) |
27 |
|
sbccow |
|- ( [. G / h ]. [. h / f ]. ps <-> [. G / f ]. ps ) |
28 |
3 27
|
bitr4i |
|- ( ps' <-> [. G / h ]. [. h / f ]. ps ) |
29 |
26 28
|
bitr4di |
|- ( h = G -> ( [. h / f ]. ps <-> ps' ) ) |
30 |
21 25 29
|
3anbi123d |
|- ( h = G -> ( ( h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) <-> ( G Fn N /\ ph' /\ ps' ) ) ) |
31 |
30
|
anbi2d |
|- ( h = G -> ( ( N e. D /\ ( h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) ) <-> ( N e. D /\ ( G Fn N /\ ph' /\ ps' ) ) ) ) |
32 |
|
bnj252 |
|- ( ( N e. D /\ G Fn N /\ ph' /\ ps' ) <-> ( N e. D /\ ( G Fn N /\ ph' /\ ps' ) ) ) |
33 |
31 18 32
|
3bitr4g |
|- ( h = G -> ( ( N e. D /\ h Fn N /\ [. h / f ]. ph /\ [. h / f ]. ps ) <-> ( N e. D /\ G Fn N /\ ph' /\ ps' ) ) ) |
34 |
20 33
|
syl5bb |
|- ( h = G -> ( [. h / f ]. ch <-> ( N e. D /\ G Fn N /\ ph' /\ ps' ) ) ) |
35 |
5 34
|
sbcie |
|- ( [. G / h ]. [. h / f ]. ch <-> ( N e. D /\ G Fn N /\ ph' /\ ps' ) ) |
36 |
4 6 35
|
3bitr2i |
|- ( ch' <-> ( N e. D /\ G Fn N /\ ph' /\ ps' ) ) |