Metamath Proof Explorer


Theorem bnj984

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj984.3
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )
bnj984.11
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
Assertion bnj984
|- ( G e. A -> ( G e. B <-> [. G / f ]. E. n ch ) )

Proof

Step Hyp Ref Expression
1 bnj984.3
 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )
2 bnj984.11
 |-  B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) }
3 2 eleq2i
 |-  ( G e. B <-> G e. { f | E. n e. D ( f Fn n /\ ph /\ ps ) } )
4 sbc8g
 |-  ( G e. A -> ( [. G / f ]. E. n e. D ( f Fn n /\ ph /\ ps ) <-> G e. { f | E. n e. D ( f Fn n /\ ph /\ ps ) } ) )
5 3 4 bitr4id
 |-  ( G e. A -> ( G e. B <-> [. G / f ]. E. n e. D ( f Fn n /\ ph /\ ps ) ) )
6 df-rex
 |-  ( E. n e. D ( f Fn n /\ ph /\ ps ) <-> E. n ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) )
7 bnj252
 |-  ( ( n e. D /\ f Fn n /\ ph /\ ps ) <-> ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) )
8 1 7 bitri
 |-  ( ch <-> ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) )
9 6 8 bnj133
 |-  ( E. n e. D ( f Fn n /\ ph /\ ps ) <-> E. n ch )
10 9 sbcbii
 |-  ( [. G / f ]. E. n e. D ( f Fn n /\ ph /\ ps ) <-> [. G / f ]. E. n ch )
11 5 10 bitrdi
 |-  ( G e. A -> ( G e. B <-> [. G / f ]. E. n ch ) )