Step |
Hyp |
Ref |
Expression |
1 |
|
bnj985.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
2 |
|
bnj985.6 |
|- ( ch' <-> [. p / n ]. ch ) |
3 |
|
bnj985.9 |
|- ( ch" <-> [. G / f ]. ch' ) |
4 |
|
bnj985.11 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
5 |
|
bnj985.13 |
|- G = ( f u. { <. n , C >. } ) |
6 |
5
|
bnj918 |
|- G e. _V |
7 |
1 4
|
bnj984 |
|- ( G e. _V -> ( G e. B <-> [. G / f ]. E. n ch ) ) |
8 |
6 7
|
ax-mp |
|- ( G e. B <-> [. G / f ]. E. n ch ) |
9 |
|
sbcex2 |
|- ( [. G / f ]. E. p ch' <-> E. p [. G / f ]. ch' ) |
10 |
|
nfv |
|- F/ p ch |
11 |
10
|
sb8e |
|- ( E. n ch <-> E. p [ p / n ] ch ) |
12 |
|
sbsbc |
|- ( [ p / n ] ch <-> [. p / n ]. ch ) |
13 |
12
|
exbii |
|- ( E. p [ p / n ] ch <-> E. p [. p / n ]. ch ) |
14 |
11 13
|
bitri |
|- ( E. n ch <-> E. p [. p / n ]. ch ) |
15 |
14 2
|
bnj133 |
|- ( E. n ch <-> E. p ch' ) |
16 |
15
|
sbcbii |
|- ( [. G / f ]. E. n ch <-> [. G / f ]. E. p ch' ) |
17 |
3
|
exbii |
|- ( E. p ch" <-> E. p [. G / f ]. ch' ) |
18 |
9 16 17
|
3bitr4i |
|- ( [. G / f ]. E. n ch <-> E. p ch" ) |
19 |
8 18
|
bitri |
|- ( G e. B <-> E. p ch" ) |