| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj998.1 | 
							 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj998.2 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj998.3 | 
							 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj998.4 | 
							 |-  ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj998.5 | 
							 |-  ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj998.7 | 
							 |-  ( ph' <-> [. p / n ]. ph )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj998.8 | 
							 |-  ( ps' <-> [. p / n ]. ps )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj998.9 | 
							 |-  ( ch' <-> [. p / n ]. ch )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj998.10 | 
							 |-  ( ph" <-> [. G / f ]. ph' )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj998.11 | 
							 |-  ( ps" <-> [. G / f ]. ps' )  | 
						
						
							| 11 | 
							
								
							 | 
							bnj998.12 | 
							 |-  ( ch" <-> [. G / f ]. ch' )  | 
						
						
							| 12 | 
							
								
							 | 
							bnj998.13 | 
							 |-  D = ( _om \ { (/) } ) | 
						
						
							| 13 | 
							
								
							 | 
							bnj998.14 | 
							 |-  B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
						
							| 14 | 
							
								
							 | 
							bnj998.15 | 
							 |-  C = U_ y e. ( f ` m ) _pred ( y , A , R )  | 
						
						
							| 15 | 
							
								
							 | 
							bnj998.16 | 
							 |-  G = ( f u. { <. n , C >. } ) | 
						
						
							| 16 | 
							
								
							 | 
							bnj253 | 
							 |-  ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) <-> ( ( R _FrSe A /\ X e. A ) /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simp1bi | 
							 |-  ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) -> ( R _FrSe A /\ X e. A ) )  | 
						
						
							| 18 | 
							
								4 17
							 | 
							sylbi | 
							 |-  ( th -> ( R _FrSe A /\ X e. A ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							bnj705 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( R _FrSe A /\ X e. A ) )  | 
						
						
							| 20 | 
							
								
							 | 
							bnj643 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ch )  | 
						
						
							| 21 | 
							
								
							 | 
							3simpc | 
							 |-  ( ( m e. _om /\ n = suc m /\ p = suc n ) -> ( n = suc m /\ p = suc n ) )  | 
						
						
							| 22 | 
							
								5 21
							 | 
							sylbi | 
							 |-  ( ta -> ( n = suc m /\ p = suc n ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							bnj707 | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( n = suc m /\ p = suc n ) )  | 
						
						
							| 24 | 
							
								
							 | 
							bnj255 | 
							 |-  ( ( ( R _FrSe A /\ X e. A ) /\ ch /\ n = suc m /\ p = suc n ) <-> ( ( R _FrSe A /\ X e. A ) /\ ch /\ ( n = suc m /\ p = suc n ) ) )  | 
						
						
							| 25 | 
							
								19 20 23 24
							 | 
							syl3anbrc | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( ( R _FrSe A /\ X e. A ) /\ ch /\ n = suc m /\ p = suc n ) )  | 
						
						
							| 26 | 
							
								
							 | 
							bnj252 | 
							 |-  ( ( ( R _FrSe A /\ X e. A ) /\ ch /\ n = suc m /\ p = suc n ) <-> ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							sylib | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							biid | 
							 |-  ( ( f Fn n /\ ph /\ ps ) <-> ( f Fn n /\ ph /\ ps ) )  | 
						
						
							| 29 | 
							
								
							 | 
							biid | 
							 |-  ( ( n e. D /\ p = suc n /\ m e. n ) <-> ( n e. D /\ p = suc n /\ m e. n ) )  | 
						
						
							| 30 | 
							
								1 2 3 6 7 8 9 10 11 12 13 14 15 28 29
							 | 
							bnj910 | 
							 |-  ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ch" )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							syl | 
							 |-  ( ( th /\ ch /\ ta /\ et ) -> ch" )  |