Step |
Hyp |
Ref |
Expression |
1 |
|
bnj998.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj998.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj998.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
4 |
|
bnj998.4 |
|- ( th <-> ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) ) |
5 |
|
bnj998.5 |
|- ( ta <-> ( m e. _om /\ n = suc m /\ p = suc n ) ) |
6 |
|
bnj998.7 |
|- ( ph' <-> [. p / n ]. ph ) |
7 |
|
bnj998.8 |
|- ( ps' <-> [. p / n ]. ps ) |
8 |
|
bnj998.9 |
|- ( ch' <-> [. p / n ]. ch ) |
9 |
|
bnj998.10 |
|- ( ph" <-> [. G / f ]. ph' ) |
10 |
|
bnj998.11 |
|- ( ps" <-> [. G / f ]. ps' ) |
11 |
|
bnj998.12 |
|- ( ch" <-> [. G / f ]. ch' ) |
12 |
|
bnj998.13 |
|- D = ( _om \ { (/) } ) |
13 |
|
bnj998.14 |
|- B = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } |
14 |
|
bnj998.15 |
|- C = U_ y e. ( f ` m ) _pred ( y , A , R ) |
15 |
|
bnj998.16 |
|- G = ( f u. { <. n , C >. } ) |
16 |
|
bnj253 |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) <-> ( ( R _FrSe A /\ X e. A ) /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) ) |
17 |
16
|
simp1bi |
|- ( ( R _FrSe A /\ X e. A /\ y e. _trCl ( X , A , R ) /\ z e. _pred ( y , A , R ) ) -> ( R _FrSe A /\ X e. A ) ) |
18 |
4 17
|
sylbi |
|- ( th -> ( R _FrSe A /\ X e. A ) ) |
19 |
18
|
bnj705 |
|- ( ( th /\ ch /\ ta /\ et ) -> ( R _FrSe A /\ X e. A ) ) |
20 |
|
bnj643 |
|- ( ( th /\ ch /\ ta /\ et ) -> ch ) |
21 |
|
3simpc |
|- ( ( m e. _om /\ n = suc m /\ p = suc n ) -> ( n = suc m /\ p = suc n ) ) |
22 |
5 21
|
sylbi |
|- ( ta -> ( n = suc m /\ p = suc n ) ) |
23 |
22
|
bnj707 |
|- ( ( th /\ ch /\ ta /\ et ) -> ( n = suc m /\ p = suc n ) ) |
24 |
|
bnj255 |
|- ( ( ( R _FrSe A /\ X e. A ) /\ ch /\ n = suc m /\ p = suc n ) <-> ( ( R _FrSe A /\ X e. A ) /\ ch /\ ( n = suc m /\ p = suc n ) ) ) |
25 |
19 20 23 24
|
syl3anbrc |
|- ( ( th /\ ch /\ ta /\ et ) -> ( ( R _FrSe A /\ X e. A ) /\ ch /\ n = suc m /\ p = suc n ) ) |
26 |
|
bnj252 |
|- ( ( ( R _FrSe A /\ X e. A ) /\ ch /\ n = suc m /\ p = suc n ) <-> ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) ) |
27 |
25 26
|
sylib |
|- ( ( th /\ ch /\ ta /\ et ) -> ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) ) |
28 |
|
biid |
|- ( ( f Fn n /\ ph /\ ps ) <-> ( f Fn n /\ ph /\ ps ) ) |
29 |
|
biid |
|- ( ( n e. D /\ p = suc n /\ m e. n ) <-> ( n e. D /\ p = suc n /\ m e. n ) ) |
30 |
1 2 3 6 7 8 9 10 11 12 13 14 15 28 29
|
bnj910 |
|- ( ( ( R _FrSe A /\ X e. A ) /\ ( ch /\ n = suc m /\ p = suc n ) ) -> ch" ) |
31 |
27 30
|
syl |
|- ( ( th /\ ch /\ ta /\ et ) -> ch" ) |