Step |
Hyp |
Ref |
Expression |
1 |
|
bnj999.1 |
|- ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) ) |
2 |
|
bnj999.2 |
|- ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
3 |
|
bnj999.3 |
|- ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) |
4 |
|
bnj999.7 |
|- ( ph' <-> [. p / n ]. ph ) |
5 |
|
bnj999.8 |
|- ( ps' <-> [. p / n ]. ps ) |
6 |
|
bnj999.9 |
|- ( ch' <-> [. p / n ]. ch ) |
7 |
|
bnj999.10 |
|- ( ph" <-> [. G / f ]. ph' ) |
8 |
|
bnj999.11 |
|- ( ps" <-> [. G / f ]. ps' ) |
9 |
|
bnj999.12 |
|- ( ch" <-> [. G / f ]. ch' ) |
10 |
|
bnj999.15 |
|- C = U_ y e. ( f ` m ) _pred ( y , A , R ) |
11 |
|
bnj999.16 |
|- G = ( f u. { <. n , C >. } ) |
12 |
|
vex |
|- p e. _V |
13 |
3 4 5 6 12
|
bnj919 |
|- ( ch' <-> ( p e. D /\ f Fn p /\ ph' /\ ps' ) ) |
14 |
11
|
bnj918 |
|- G e. _V |
15 |
13 7 8 9 14
|
bnj976 |
|- ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) |
16 |
15
|
bnj1254 |
|- ( ch" -> ps" ) |
17 |
16
|
anim1i |
|- ( ( ch" /\ ( i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) -> ( ps" /\ ( i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) ) |
18 |
|
bnj252 |
|- ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) <-> ( ch" /\ ( i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) ) |
19 |
|
bnj252 |
|- ( ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) <-> ( ps" /\ ( i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) ) |
20 |
17 18 19
|
3imtr4i |
|- ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) |
21 |
|
ssiun2 |
|- ( y e. ( G ` i ) -> _pred ( y , A , R ) C_ U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
22 |
21
|
bnj708 |
|- ( ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
23 |
|
3simpa |
|- ( ( ps" /\ i e. _om /\ suc i e. p ) -> ( ps" /\ i e. _om ) ) |
24 |
23
|
ancomd |
|- ( ( ps" /\ i e. _om /\ suc i e. p ) -> ( i e. _om /\ ps" ) ) |
25 |
|
simp3 |
|- ( ( ps" /\ i e. _om /\ suc i e. p ) -> suc i e. p ) |
26 |
2 5 12
|
bnj539 |
|- ( ps' <-> A. i e. _om ( suc i e. p -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
27 |
26 8 10 11
|
bnj965 |
|- ( ps" <-> A. i e. _om ( suc i e. p -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) |
28 |
27
|
bnj228 |
|- ( ( i e. _om /\ ps" ) -> ( suc i e. p -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) ) |
29 |
24 25 28
|
sylc |
|- ( ( ps" /\ i e. _om /\ suc i e. p ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
30 |
29
|
bnj721 |
|- ( ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) |
31 |
22 30
|
sseqtrrd |
|- ( ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) |
32 |
20 31
|
syl |
|- ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) |