| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj999.1 | 
							 |-  ( ph <-> ( f ` (/) ) = _pred ( X , A , R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj999.2 | 
							 |-  ( ps <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj999.3 | 
							 |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj999.7 | 
							 |-  ( ph' <-> [. p / n ]. ph )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj999.8 | 
							 |-  ( ps' <-> [. p / n ]. ps )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj999.9 | 
							 |-  ( ch' <-> [. p / n ]. ch )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj999.10 | 
							 |-  ( ph" <-> [. G / f ]. ph' )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj999.11 | 
							 |-  ( ps" <-> [. G / f ]. ps' )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj999.12 | 
							 |-  ( ch" <-> [. G / f ]. ch' )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj999.15 | 
							 |-  C = U_ y e. ( f ` m ) _pred ( y , A , R )  | 
						
						
							| 11 | 
							
								
							 | 
							bnj999.16 | 
							 |-  G = ( f u. { <. n , C >. } ) | 
						
						
							| 12 | 
							
								
							 | 
							vex | 
							 |-  p e. _V  | 
						
						
							| 13 | 
							
								3 4 5 6 12
							 | 
							bnj919 | 
							 |-  ( ch' <-> ( p e. D /\ f Fn p /\ ph' /\ ps' ) )  | 
						
						
							| 14 | 
							
								11
							 | 
							bnj918 | 
							 |-  G e. _V  | 
						
						
							| 15 | 
							
								13 7 8 9 14
							 | 
							bnj976 | 
							 |-  ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							bnj1254 | 
							 |-  ( ch" -> ps" )  | 
						
						
							| 17 | 
							
								16
							 | 
							anim1i | 
							 |-  ( ( ch" /\ ( i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) -> ( ps" /\ ( i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							bnj252 | 
							 |-  ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) <-> ( ch" /\ ( i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							bnj252 | 
							 |-  ( ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) <-> ( ps" /\ ( i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) )  | 
						
						
							| 20 | 
							
								17 18 19
							 | 
							3imtr4i | 
							 |-  ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							ssiun2 | 
							 |-  ( y e. ( G ` i ) -> _pred ( y , A , R ) C_ U_ y e. ( G ` i ) _pred ( y , A , R ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							bnj708 | 
							 |-  ( ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ U_ y e. ( G ` i ) _pred ( y , A , R ) )  | 
						
						
							| 23 | 
							
								
							 | 
							3simpa | 
							 |-  ( ( ps" /\ i e. _om /\ suc i e. p ) -> ( ps" /\ i e. _om ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ancomd | 
							 |-  ( ( ps" /\ i e. _om /\ suc i e. p ) -> ( i e. _om /\ ps" ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ps" /\ i e. _om /\ suc i e. p ) -> suc i e. p )  | 
						
						
							| 26 | 
							
								2 5 12
							 | 
							bnj539 | 
							 |-  ( ps' <-> A. i e. _om ( suc i e. p -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 27 | 
							
								26 8 10 11
							 | 
							bnj965 | 
							 |-  ( ps" <-> A. i e. _om ( suc i e. p -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							bnj228 | 
							 |-  ( ( i e. _om /\ ps" ) -> ( suc i e. p -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) ) )  | 
						
						
							| 29 | 
							
								24 25 28
							 | 
							sylc | 
							 |-  ( ( ps" /\ i e. _om /\ suc i e. p ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							bnj721 | 
							 |-  ( ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> ( G ` suc i ) = U_ y e. ( G ` i ) _pred ( y , A , R ) )  | 
						
						
							| 31 | 
							
								22 30
							 | 
							sseqtrrd | 
							 |-  ( ( ps" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )  | 
						
						
							| 32 | 
							
								20 31
							 | 
							syl | 
							 |-  ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) )  |