Metamath Proof Explorer


Theorem bnnlm

Description: A Banach space is a normed module. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion bnnlm
|- ( W e. Ban -> W e. NrmMod )

Proof

Step Hyp Ref Expression
1 bnnvc
 |-  ( W e. Ban -> W e. NrmVec )
2 nvcnlm
 |-  ( W e. NrmVec -> W e. NrmMod )
3 1 2 syl
 |-  ( W e. Ban -> W e. NrmMod )