Step |
Hyp |
Ref |
Expression |
1 |
|
0nn0 |
|- 0 e. NN0 |
2 |
|
bpolyval |
|- ( ( 0 e. NN0 /\ X e. CC ) -> ( 0 BernPoly X ) = ( ( X ^ 0 ) - sum_ k e. ( 0 ... ( 0 - 1 ) ) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) ) ) |
3 |
1 2
|
mpan |
|- ( X e. CC -> ( 0 BernPoly X ) = ( ( X ^ 0 ) - sum_ k e. ( 0 ... ( 0 - 1 ) ) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) ) ) |
4 |
|
exp0 |
|- ( X e. CC -> ( X ^ 0 ) = 1 ) |
5 |
4
|
oveq1d |
|- ( X e. CC -> ( ( X ^ 0 ) - sum_ k e. ( 0 ... ( 0 - 1 ) ) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) ) = ( 1 - sum_ k e. ( 0 ... ( 0 - 1 ) ) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) ) ) |
6 |
|
risefall0lem |
|- ( 0 ... ( 0 - 1 ) ) = (/) |
7 |
6
|
sumeq1i |
|- sum_ k e. ( 0 ... ( 0 - 1 ) ) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) = sum_ k e. (/) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) |
8 |
|
sum0 |
|- sum_ k e. (/) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) = 0 |
9 |
7 8
|
eqtri |
|- sum_ k e. ( 0 ... ( 0 - 1 ) ) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) = 0 |
10 |
9
|
oveq2i |
|- ( 1 - sum_ k e. ( 0 ... ( 0 - 1 ) ) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) ) = ( 1 - 0 ) |
11 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
12 |
10 11
|
eqtri |
|- ( 1 - sum_ k e. ( 0 ... ( 0 - 1 ) ) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) ) = 1 |
13 |
5 12
|
eqtrdi |
|- ( X e. CC -> ( ( X ^ 0 ) - sum_ k e. ( 0 ... ( 0 - 1 ) ) ( ( 0 _C k ) x. ( ( k BernPoly X ) / ( ( 0 - k ) + 1 ) ) ) ) = 1 ) |
14 |
3 13
|
eqtrd |
|- ( X e. CC -> ( 0 BernPoly X ) = 1 ) |