Step |
Hyp |
Ref |
Expression |
1 |
|
2nn0 |
|- 2 e. NN0 |
2 |
|
bpolyval |
|- ( ( 2 e. NN0 /\ X e. CC ) -> ( 2 BernPoly X ) = ( ( X ^ 2 ) - sum_ k e. ( 0 ... ( 2 - 1 ) ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) ) ) |
3 |
1 2
|
mpan |
|- ( X e. CC -> ( 2 BernPoly X ) = ( ( X ^ 2 ) - sum_ k e. ( 0 ... ( 2 - 1 ) ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) ) ) |
4 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
5 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
6 |
4 5
|
eqtr4i |
|- ( 2 - 1 ) = ( 0 + 1 ) |
7 |
6
|
oveq2i |
|- ( 0 ... ( 2 - 1 ) ) = ( 0 ... ( 0 + 1 ) ) |
8 |
7
|
sumeq1i |
|- sum_ k e. ( 0 ... ( 2 - 1 ) ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) |
9 |
|
0nn0 |
|- 0 e. NN0 |
10 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
11 |
9 10
|
eleqtri |
|- 0 e. ( ZZ>= ` 0 ) |
12 |
11
|
a1i |
|- ( X e. CC -> 0 e. ( ZZ>= ` 0 ) ) |
13 |
|
0z |
|- 0 e. ZZ |
14 |
|
fzpr |
|- ( 0 e. ZZ -> ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) |
15 |
13 14
|
ax-mp |
|- ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } |
16 |
15
|
eleq2i |
|- ( k e. ( 0 ... ( 0 + 1 ) ) <-> k e. { 0 , ( 0 + 1 ) } ) |
17 |
|
vex |
|- k e. _V |
18 |
17
|
elpr |
|- ( k e. { 0 , ( 0 + 1 ) } <-> ( k = 0 \/ k = ( 0 + 1 ) ) ) |
19 |
16 18
|
bitri |
|- ( k e. ( 0 ... ( 0 + 1 ) ) <-> ( k = 0 \/ k = ( 0 + 1 ) ) ) |
20 |
|
oveq2 |
|- ( k = 0 -> ( 2 _C k ) = ( 2 _C 0 ) ) |
21 |
|
bcn0 |
|- ( 2 e. NN0 -> ( 2 _C 0 ) = 1 ) |
22 |
1 21
|
ax-mp |
|- ( 2 _C 0 ) = 1 |
23 |
20 22
|
eqtrdi |
|- ( k = 0 -> ( 2 _C k ) = 1 ) |
24 |
|
oveq1 |
|- ( k = 0 -> ( k BernPoly X ) = ( 0 BernPoly X ) ) |
25 |
|
oveq2 |
|- ( k = 0 -> ( 2 - k ) = ( 2 - 0 ) ) |
26 |
25
|
oveq1d |
|- ( k = 0 -> ( ( 2 - k ) + 1 ) = ( ( 2 - 0 ) + 1 ) ) |
27 |
|
2cn |
|- 2 e. CC |
28 |
27
|
subid1i |
|- ( 2 - 0 ) = 2 |
29 |
28
|
oveq1i |
|- ( ( 2 - 0 ) + 1 ) = ( 2 + 1 ) |
30 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
31 |
29 30
|
eqtr4i |
|- ( ( 2 - 0 ) + 1 ) = 3 |
32 |
26 31
|
eqtrdi |
|- ( k = 0 -> ( ( 2 - k ) + 1 ) = 3 ) |
33 |
24 32
|
oveq12d |
|- ( k = 0 -> ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) = ( ( 0 BernPoly X ) / 3 ) ) |
34 |
23 33
|
oveq12d |
|- ( k = 0 -> ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( 1 x. ( ( 0 BernPoly X ) / 3 ) ) ) |
35 |
|
bpoly0 |
|- ( X e. CC -> ( 0 BernPoly X ) = 1 ) |
36 |
35
|
oveq1d |
|- ( X e. CC -> ( ( 0 BernPoly X ) / 3 ) = ( 1 / 3 ) ) |
37 |
36
|
oveq2d |
|- ( X e. CC -> ( 1 x. ( ( 0 BernPoly X ) / 3 ) ) = ( 1 x. ( 1 / 3 ) ) ) |
38 |
|
3cn |
|- 3 e. CC |
39 |
|
3ne0 |
|- 3 =/= 0 |
40 |
38 39
|
reccli |
|- ( 1 / 3 ) e. CC |
41 |
40
|
mulid2i |
|- ( 1 x. ( 1 / 3 ) ) = ( 1 / 3 ) |
42 |
37 41
|
eqtrdi |
|- ( X e. CC -> ( 1 x. ( ( 0 BernPoly X ) / 3 ) ) = ( 1 / 3 ) ) |
43 |
34 42
|
sylan9eqr |
|- ( ( X e. CC /\ k = 0 ) -> ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( 1 / 3 ) ) |
44 |
43 40
|
eqeltrdi |
|- ( ( X e. CC /\ k = 0 ) -> ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) e. CC ) |
45 |
5
|
eqeq2i |
|- ( k = ( 0 + 1 ) <-> k = 1 ) |
46 |
|
oveq2 |
|- ( k = 1 -> ( 2 _C k ) = ( 2 _C 1 ) ) |
47 |
|
bcn1 |
|- ( 2 e. NN0 -> ( 2 _C 1 ) = 2 ) |
48 |
1 47
|
ax-mp |
|- ( 2 _C 1 ) = 2 |
49 |
46 48
|
eqtrdi |
|- ( k = 1 -> ( 2 _C k ) = 2 ) |
50 |
|
oveq1 |
|- ( k = 1 -> ( k BernPoly X ) = ( 1 BernPoly X ) ) |
51 |
|
oveq2 |
|- ( k = 1 -> ( 2 - k ) = ( 2 - 1 ) ) |
52 |
51
|
oveq1d |
|- ( k = 1 -> ( ( 2 - k ) + 1 ) = ( ( 2 - 1 ) + 1 ) ) |
53 |
|
ax-1cn |
|- 1 e. CC |
54 |
|
npcan |
|- ( ( 2 e. CC /\ 1 e. CC ) -> ( ( 2 - 1 ) + 1 ) = 2 ) |
55 |
27 53 54
|
mp2an |
|- ( ( 2 - 1 ) + 1 ) = 2 |
56 |
52 55
|
eqtrdi |
|- ( k = 1 -> ( ( 2 - k ) + 1 ) = 2 ) |
57 |
50 56
|
oveq12d |
|- ( k = 1 -> ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) = ( ( 1 BernPoly X ) / 2 ) ) |
58 |
49 57
|
oveq12d |
|- ( k = 1 -> ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( 2 x. ( ( 1 BernPoly X ) / 2 ) ) ) |
59 |
45 58
|
sylbi |
|- ( k = ( 0 + 1 ) -> ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( 2 x. ( ( 1 BernPoly X ) / 2 ) ) ) |
60 |
|
bpoly1 |
|- ( X e. CC -> ( 1 BernPoly X ) = ( X - ( 1 / 2 ) ) ) |
61 |
60
|
oveq1d |
|- ( X e. CC -> ( ( 1 BernPoly X ) / 2 ) = ( ( X - ( 1 / 2 ) ) / 2 ) ) |
62 |
61
|
oveq2d |
|- ( X e. CC -> ( 2 x. ( ( 1 BernPoly X ) / 2 ) ) = ( 2 x. ( ( X - ( 1 / 2 ) ) / 2 ) ) ) |
63 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
64 |
|
subcl |
|- ( ( X e. CC /\ ( 1 / 2 ) e. CC ) -> ( X - ( 1 / 2 ) ) e. CC ) |
65 |
63 64
|
mpan2 |
|- ( X e. CC -> ( X - ( 1 / 2 ) ) e. CC ) |
66 |
|
2ne0 |
|- 2 =/= 0 |
67 |
|
divcan2 |
|- ( ( ( X - ( 1 / 2 ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( ( X - ( 1 / 2 ) ) / 2 ) ) = ( X - ( 1 / 2 ) ) ) |
68 |
27 66 67
|
mp3an23 |
|- ( ( X - ( 1 / 2 ) ) e. CC -> ( 2 x. ( ( X - ( 1 / 2 ) ) / 2 ) ) = ( X - ( 1 / 2 ) ) ) |
69 |
65 68
|
syl |
|- ( X e. CC -> ( 2 x. ( ( X - ( 1 / 2 ) ) / 2 ) ) = ( X - ( 1 / 2 ) ) ) |
70 |
62 69
|
eqtrd |
|- ( X e. CC -> ( 2 x. ( ( 1 BernPoly X ) / 2 ) ) = ( X - ( 1 / 2 ) ) ) |
71 |
59 70
|
sylan9eqr |
|- ( ( X e. CC /\ k = ( 0 + 1 ) ) -> ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( X - ( 1 / 2 ) ) ) |
72 |
65
|
adantr |
|- ( ( X e. CC /\ k = ( 0 + 1 ) ) -> ( X - ( 1 / 2 ) ) e. CC ) |
73 |
71 72
|
eqeltrd |
|- ( ( X e. CC /\ k = ( 0 + 1 ) ) -> ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) e. CC ) |
74 |
44 73
|
jaodan |
|- ( ( X e. CC /\ ( k = 0 \/ k = ( 0 + 1 ) ) ) -> ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) e. CC ) |
75 |
19 74
|
sylan2b |
|- ( ( X e. CC /\ k e. ( 0 ... ( 0 + 1 ) ) ) -> ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) e. CC ) |
76 |
12 75 59
|
fsump1 |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( sum_ k e. ( 0 ... 0 ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) + ( 2 x. ( ( 1 BernPoly X ) / 2 ) ) ) ) |
77 |
42 40
|
eqeltrdi |
|- ( X e. CC -> ( 1 x. ( ( 0 BernPoly X ) / 3 ) ) e. CC ) |
78 |
34
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( 1 x. ( ( 0 BernPoly X ) / 3 ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( 1 x. ( ( 0 BernPoly X ) / 3 ) ) ) |
79 |
13 77 78
|
sylancr |
|- ( X e. CC -> sum_ k e. ( 0 ... 0 ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( 1 x. ( ( 0 BernPoly X ) / 3 ) ) ) |
80 |
79 42
|
eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... 0 ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( 1 / 3 ) ) |
81 |
80 70
|
oveq12d |
|- ( X e. CC -> ( sum_ k e. ( 0 ... 0 ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) + ( 2 x. ( ( 1 BernPoly X ) / 2 ) ) ) = ( ( 1 / 3 ) + ( X - ( 1 / 2 ) ) ) ) |
82 |
76 81
|
eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( ( 1 / 3 ) + ( X - ( 1 / 2 ) ) ) ) |
83 |
|
addsub12 |
|- ( ( ( 1 / 3 ) e. CC /\ X e. CC /\ ( 1 / 2 ) e. CC ) -> ( ( 1 / 3 ) + ( X - ( 1 / 2 ) ) ) = ( X + ( ( 1 / 3 ) - ( 1 / 2 ) ) ) ) |
84 |
40 63 83
|
mp3an13 |
|- ( X e. CC -> ( ( 1 / 3 ) + ( X - ( 1 / 2 ) ) ) = ( X + ( ( 1 / 3 ) - ( 1 / 2 ) ) ) ) |
85 |
63 40
|
negsubdi2i |
|- -u ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( ( 1 / 3 ) - ( 1 / 2 ) ) |
86 |
|
halfthird |
|- ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( 1 / 6 ) |
87 |
86
|
negeqi |
|- -u ( ( 1 / 2 ) - ( 1 / 3 ) ) = -u ( 1 / 6 ) |
88 |
85 87
|
eqtr3i |
|- ( ( 1 / 3 ) - ( 1 / 2 ) ) = -u ( 1 / 6 ) |
89 |
88
|
oveq2i |
|- ( X + ( ( 1 / 3 ) - ( 1 / 2 ) ) ) = ( X + -u ( 1 / 6 ) ) |
90 |
84 89
|
eqtrdi |
|- ( X e. CC -> ( ( 1 / 3 ) + ( X - ( 1 / 2 ) ) ) = ( X + -u ( 1 / 6 ) ) ) |
91 |
|
6cn |
|- 6 e. CC |
92 |
|
6re |
|- 6 e. RR |
93 |
|
6pos |
|- 0 < 6 |
94 |
92 93
|
gt0ne0ii |
|- 6 =/= 0 |
95 |
91 94
|
reccli |
|- ( 1 / 6 ) e. CC |
96 |
|
negsub |
|- ( ( X e. CC /\ ( 1 / 6 ) e. CC ) -> ( X + -u ( 1 / 6 ) ) = ( X - ( 1 / 6 ) ) ) |
97 |
95 96
|
mpan2 |
|- ( X e. CC -> ( X + -u ( 1 / 6 ) ) = ( X - ( 1 / 6 ) ) ) |
98 |
82 90 97
|
3eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( X - ( 1 / 6 ) ) ) |
99 |
8 98
|
eqtrid |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 2 - 1 ) ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) = ( X - ( 1 / 6 ) ) ) |
100 |
99
|
oveq2d |
|- ( X e. CC -> ( ( X ^ 2 ) - sum_ k e. ( 0 ... ( 2 - 1 ) ) ( ( 2 _C k ) x. ( ( k BernPoly X ) / ( ( 2 - k ) + 1 ) ) ) ) = ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) ) |
101 |
|
sqcl |
|- ( X e. CC -> ( X ^ 2 ) e. CC ) |
102 |
|
subsub |
|- ( ( ( X ^ 2 ) e. CC /\ X e. CC /\ ( 1 / 6 ) e. CC ) -> ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) = ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) |
103 |
95 102
|
mp3an3 |
|- ( ( ( X ^ 2 ) e. CC /\ X e. CC ) -> ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) = ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) |
104 |
101 103
|
mpancom |
|- ( X e. CC -> ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) = ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) |
105 |
3 100 104
|
3eqtrd |
|- ( X e. CC -> ( 2 BernPoly X ) = ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) |