Step |
Hyp |
Ref |
Expression |
1 |
|
3nn0 |
|- 3 e. NN0 |
2 |
|
bpolyval |
|- ( ( 3 e. NN0 /\ X e. CC ) -> ( 3 BernPoly X ) = ( ( X ^ 3 ) - sum_ k e. ( 0 ... ( 3 - 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) ) ) |
3 |
1 2
|
mpan |
|- ( X e. CC -> ( 3 BernPoly X ) = ( ( X ^ 3 ) - sum_ k e. ( 0 ... ( 3 - 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) ) ) |
4 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
5 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
6 |
4 5
|
eqtri |
|- ( 3 - 1 ) = ( 1 + 1 ) |
7 |
6
|
oveq2i |
|- ( 0 ... ( 3 - 1 ) ) = ( 0 ... ( 1 + 1 ) ) |
8 |
7
|
sumeq1i |
|- sum_ k e. ( 0 ... ( 3 - 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = sum_ k e. ( 0 ... ( 1 + 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) |
9 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
10 |
9
|
a1i |
|- ( X e. CC -> 1 e. ( ZZ>= ` 0 ) ) |
11 |
|
0z |
|- 0 e. ZZ |
12 |
|
fzpr |
|- ( 0 e. ZZ -> ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) |
13 |
11 12
|
ax-mp |
|- ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } |
14 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
15 |
14
|
oveq2i |
|- ( 0 ... ( 0 + 1 ) ) = ( 0 ... 1 ) |
16 |
14
|
preq2i |
|- { 0 , ( 0 + 1 ) } = { 0 , 1 } |
17 |
13 15 16
|
3eqtr3ri |
|- { 0 , 1 } = ( 0 ... 1 ) |
18 |
5
|
sneqi |
|- { 2 } = { ( 1 + 1 ) } |
19 |
17 18
|
uneq12i |
|- ( { 0 , 1 } u. { 2 } ) = ( ( 0 ... 1 ) u. { ( 1 + 1 ) } ) |
20 |
|
df-tp |
|- { 0 , 1 , 2 } = ( { 0 , 1 } u. { 2 } ) |
21 |
|
fzsuc |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 0 ... ( 1 + 1 ) ) = ( ( 0 ... 1 ) u. { ( 1 + 1 ) } ) ) |
22 |
9 21
|
ax-mp |
|- ( 0 ... ( 1 + 1 ) ) = ( ( 0 ... 1 ) u. { ( 1 + 1 ) } ) |
23 |
19 20 22
|
3eqtr4ri |
|- ( 0 ... ( 1 + 1 ) ) = { 0 , 1 , 2 } |
24 |
23
|
eleq2i |
|- ( k e. ( 0 ... ( 1 + 1 ) ) <-> k e. { 0 , 1 , 2 } ) |
25 |
|
vex |
|- k e. _V |
26 |
25
|
eltp |
|- ( k e. { 0 , 1 , 2 } <-> ( k = 0 \/ k = 1 \/ k = 2 ) ) |
27 |
24 26
|
bitri |
|- ( k e. ( 0 ... ( 1 + 1 ) ) <-> ( k = 0 \/ k = 1 \/ k = 2 ) ) |
28 |
|
oveq2 |
|- ( k = 0 -> ( 3 _C k ) = ( 3 _C 0 ) ) |
29 |
|
bcn0 |
|- ( 3 e. NN0 -> ( 3 _C 0 ) = 1 ) |
30 |
1 29
|
ax-mp |
|- ( 3 _C 0 ) = 1 |
31 |
28 30
|
eqtrdi |
|- ( k = 0 -> ( 3 _C k ) = 1 ) |
32 |
|
oveq1 |
|- ( k = 0 -> ( k BernPoly X ) = ( 0 BernPoly X ) ) |
33 |
|
oveq2 |
|- ( k = 0 -> ( 3 - k ) = ( 3 - 0 ) ) |
34 |
33
|
oveq1d |
|- ( k = 0 -> ( ( 3 - k ) + 1 ) = ( ( 3 - 0 ) + 1 ) ) |
35 |
|
3cn |
|- 3 e. CC |
36 |
35
|
subid1i |
|- ( 3 - 0 ) = 3 |
37 |
36
|
oveq1i |
|- ( ( 3 - 0 ) + 1 ) = ( 3 + 1 ) |
38 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
39 |
37 38
|
eqtr4i |
|- ( ( 3 - 0 ) + 1 ) = 4 |
40 |
34 39
|
eqtrdi |
|- ( k = 0 -> ( ( 3 - k ) + 1 ) = 4 ) |
41 |
32 40
|
oveq12d |
|- ( k = 0 -> ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) = ( ( 0 BernPoly X ) / 4 ) ) |
42 |
31 41
|
oveq12d |
|- ( k = 0 -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( 1 x. ( ( 0 BernPoly X ) / 4 ) ) ) |
43 |
|
bpoly0 |
|- ( X e. CC -> ( 0 BernPoly X ) = 1 ) |
44 |
43
|
oveq1d |
|- ( X e. CC -> ( ( 0 BernPoly X ) / 4 ) = ( 1 / 4 ) ) |
45 |
44
|
oveq2d |
|- ( X e. CC -> ( 1 x. ( ( 0 BernPoly X ) / 4 ) ) = ( 1 x. ( 1 / 4 ) ) ) |
46 |
|
4cn |
|- 4 e. CC |
47 |
|
4ne0 |
|- 4 =/= 0 |
48 |
46 47
|
reccli |
|- ( 1 / 4 ) e. CC |
49 |
48
|
mulid2i |
|- ( 1 x. ( 1 / 4 ) ) = ( 1 / 4 ) |
50 |
45 49
|
eqtrdi |
|- ( X e. CC -> ( 1 x. ( ( 0 BernPoly X ) / 4 ) ) = ( 1 / 4 ) ) |
51 |
42 50
|
sylan9eqr |
|- ( ( X e. CC /\ k = 0 ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( 1 / 4 ) ) |
52 |
51 48
|
eqeltrdi |
|- ( ( X e. CC /\ k = 0 ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) e. CC ) |
53 |
|
oveq2 |
|- ( k = 1 -> ( 3 _C k ) = ( 3 _C 1 ) ) |
54 |
|
bcn1 |
|- ( 3 e. NN0 -> ( 3 _C 1 ) = 3 ) |
55 |
1 54
|
ax-mp |
|- ( 3 _C 1 ) = 3 |
56 |
53 55
|
eqtrdi |
|- ( k = 1 -> ( 3 _C k ) = 3 ) |
57 |
|
oveq1 |
|- ( k = 1 -> ( k BernPoly X ) = ( 1 BernPoly X ) ) |
58 |
|
oveq2 |
|- ( k = 1 -> ( 3 - k ) = ( 3 - 1 ) ) |
59 |
58
|
oveq1d |
|- ( k = 1 -> ( ( 3 - k ) + 1 ) = ( ( 3 - 1 ) + 1 ) ) |
60 |
|
ax-1cn |
|- 1 e. CC |
61 |
|
npcan |
|- ( ( 3 e. CC /\ 1 e. CC ) -> ( ( 3 - 1 ) + 1 ) = 3 ) |
62 |
35 60 61
|
mp2an |
|- ( ( 3 - 1 ) + 1 ) = 3 |
63 |
59 62
|
eqtrdi |
|- ( k = 1 -> ( ( 3 - k ) + 1 ) = 3 ) |
64 |
57 63
|
oveq12d |
|- ( k = 1 -> ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) = ( ( 1 BernPoly X ) / 3 ) ) |
65 |
56 64
|
oveq12d |
|- ( k = 1 -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( 3 x. ( ( 1 BernPoly X ) / 3 ) ) ) |
66 |
|
bpoly1 |
|- ( X e. CC -> ( 1 BernPoly X ) = ( X - ( 1 / 2 ) ) ) |
67 |
66
|
oveq1d |
|- ( X e. CC -> ( ( 1 BernPoly X ) / 3 ) = ( ( X - ( 1 / 2 ) ) / 3 ) ) |
68 |
67
|
oveq2d |
|- ( X e. CC -> ( 3 x. ( ( 1 BernPoly X ) / 3 ) ) = ( 3 x. ( ( X - ( 1 / 2 ) ) / 3 ) ) ) |
69 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
70 |
|
subcl |
|- ( ( X e. CC /\ ( 1 / 2 ) e. CC ) -> ( X - ( 1 / 2 ) ) e. CC ) |
71 |
69 70
|
mpan2 |
|- ( X e. CC -> ( X - ( 1 / 2 ) ) e. CC ) |
72 |
|
3ne0 |
|- 3 =/= 0 |
73 |
|
divcan2 |
|- ( ( ( X - ( 1 / 2 ) ) e. CC /\ 3 e. CC /\ 3 =/= 0 ) -> ( 3 x. ( ( X - ( 1 / 2 ) ) / 3 ) ) = ( X - ( 1 / 2 ) ) ) |
74 |
35 72 73
|
mp3an23 |
|- ( ( X - ( 1 / 2 ) ) e. CC -> ( 3 x. ( ( X - ( 1 / 2 ) ) / 3 ) ) = ( X - ( 1 / 2 ) ) ) |
75 |
71 74
|
syl |
|- ( X e. CC -> ( 3 x. ( ( X - ( 1 / 2 ) ) / 3 ) ) = ( X - ( 1 / 2 ) ) ) |
76 |
68 75
|
eqtrd |
|- ( X e. CC -> ( 3 x. ( ( 1 BernPoly X ) / 3 ) ) = ( X - ( 1 / 2 ) ) ) |
77 |
65 76
|
sylan9eqr |
|- ( ( X e. CC /\ k = 1 ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( X - ( 1 / 2 ) ) ) |
78 |
71
|
adantr |
|- ( ( X e. CC /\ k = 1 ) -> ( X - ( 1 / 2 ) ) e. CC ) |
79 |
77 78
|
eqeltrd |
|- ( ( X e. CC /\ k = 1 ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) e. CC ) |
80 |
|
oveq2 |
|- ( k = 2 -> ( 3 _C k ) = ( 3 _C 2 ) ) |
81 |
|
bcn2 |
|- ( 3 e. NN0 -> ( 3 _C 2 ) = ( ( 3 x. ( 3 - 1 ) ) / 2 ) ) |
82 |
1 81
|
ax-mp |
|- ( 3 _C 2 ) = ( ( 3 x. ( 3 - 1 ) ) / 2 ) |
83 |
4
|
oveq2i |
|- ( 3 x. ( 3 - 1 ) ) = ( 3 x. 2 ) |
84 |
83
|
oveq1i |
|- ( ( 3 x. ( 3 - 1 ) ) / 2 ) = ( ( 3 x. 2 ) / 2 ) |
85 |
|
2cn |
|- 2 e. CC |
86 |
|
2ne0 |
|- 2 =/= 0 |
87 |
35 85 86
|
divcan4i |
|- ( ( 3 x. 2 ) / 2 ) = 3 |
88 |
84 87
|
eqtri |
|- ( ( 3 x. ( 3 - 1 ) ) / 2 ) = 3 |
89 |
82 88
|
eqtri |
|- ( 3 _C 2 ) = 3 |
90 |
80 89
|
eqtrdi |
|- ( k = 2 -> ( 3 _C k ) = 3 ) |
91 |
|
oveq1 |
|- ( k = 2 -> ( k BernPoly X ) = ( 2 BernPoly X ) ) |
92 |
|
oveq2 |
|- ( k = 2 -> ( 3 - k ) = ( 3 - 2 ) ) |
93 |
92
|
oveq1d |
|- ( k = 2 -> ( ( 3 - k ) + 1 ) = ( ( 3 - 2 ) + 1 ) ) |
94 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
95 |
35 85 60 94
|
subaddrii |
|- ( 3 - 2 ) = 1 |
96 |
95
|
oveq1i |
|- ( ( 3 - 2 ) + 1 ) = ( 1 + 1 ) |
97 |
96 5
|
eqtr4i |
|- ( ( 3 - 2 ) + 1 ) = 2 |
98 |
93 97
|
eqtrdi |
|- ( k = 2 -> ( ( 3 - k ) + 1 ) = 2 ) |
99 |
91 98
|
oveq12d |
|- ( k = 2 -> ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) = ( ( 2 BernPoly X ) / 2 ) ) |
100 |
90 99
|
oveq12d |
|- ( k = 2 -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( 3 x. ( ( 2 BernPoly X ) / 2 ) ) ) |
101 |
|
2nn0 |
|- 2 e. NN0 |
102 |
|
bpolycl |
|- ( ( 2 e. NN0 /\ X e. CC ) -> ( 2 BernPoly X ) e. CC ) |
103 |
101 102
|
mpan |
|- ( X e. CC -> ( 2 BernPoly X ) e. CC ) |
104 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
105 |
|
div12 |
|- ( ( 3 e. CC /\ ( 2 BernPoly X ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( 3 x. ( ( 2 BernPoly X ) / 2 ) ) = ( ( 2 BernPoly X ) x. ( 3 / 2 ) ) ) |
106 |
35 104 105
|
mp3an13 |
|- ( ( 2 BernPoly X ) e. CC -> ( 3 x. ( ( 2 BernPoly X ) / 2 ) ) = ( ( 2 BernPoly X ) x. ( 3 / 2 ) ) ) |
107 |
103 106
|
syl |
|- ( X e. CC -> ( 3 x. ( ( 2 BernPoly X ) / 2 ) ) = ( ( 2 BernPoly X ) x. ( 3 / 2 ) ) ) |
108 |
35 85 86
|
divcli |
|- ( 3 / 2 ) e. CC |
109 |
|
mulcom |
|- ( ( ( 2 BernPoly X ) e. CC /\ ( 3 / 2 ) e. CC ) -> ( ( 2 BernPoly X ) x. ( 3 / 2 ) ) = ( ( 3 / 2 ) x. ( 2 BernPoly X ) ) ) |
110 |
103 108 109
|
sylancl |
|- ( X e. CC -> ( ( 2 BernPoly X ) x. ( 3 / 2 ) ) = ( ( 3 / 2 ) x. ( 2 BernPoly X ) ) ) |
111 |
|
bpoly2 |
|- ( X e. CC -> ( 2 BernPoly X ) = ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) |
112 |
111
|
oveq2d |
|- ( X e. CC -> ( ( 3 / 2 ) x. ( 2 BernPoly X ) ) = ( ( 3 / 2 ) x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) |
113 |
|
sqcl |
|- ( X e. CC -> ( X ^ 2 ) e. CC ) |
114 |
|
6cn |
|- 6 e. CC |
115 |
|
6re |
|- 6 e. RR |
116 |
|
6pos |
|- 0 < 6 |
117 |
115 116
|
gt0ne0ii |
|- 6 =/= 0 |
118 |
114 117
|
reccli |
|- ( 1 / 6 ) e. CC |
119 |
|
subsub |
|- ( ( ( X ^ 2 ) e. CC /\ X e. CC /\ ( 1 / 6 ) e. CC ) -> ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) = ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) |
120 |
118 119
|
mp3an3 |
|- ( ( ( X ^ 2 ) e. CC /\ X e. CC ) -> ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) = ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) |
121 |
113 120
|
mpancom |
|- ( X e. CC -> ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) = ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) |
122 |
121
|
oveq2d |
|- ( X e. CC -> ( ( 3 / 2 ) x. ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) ) = ( ( 3 / 2 ) x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) |
123 |
|
subcl |
|- ( ( X e. CC /\ ( 1 / 6 ) e. CC ) -> ( X - ( 1 / 6 ) ) e. CC ) |
124 |
118 123
|
mpan2 |
|- ( X e. CC -> ( X - ( 1 / 6 ) ) e. CC ) |
125 |
|
subdi |
|- ( ( ( 3 / 2 ) e. CC /\ ( X ^ 2 ) e. CC /\ ( X - ( 1 / 6 ) ) e. CC ) -> ( ( 3 / 2 ) x. ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) |
126 |
108 113 124 125
|
mp3an2i |
|- ( X e. CC -> ( ( 3 / 2 ) x. ( ( X ^ 2 ) - ( X - ( 1 / 6 ) ) ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) |
127 |
112 122 126
|
3eqtr2d |
|- ( X e. CC -> ( ( 3 / 2 ) x. ( 2 BernPoly X ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) |
128 |
107 110 127
|
3eqtrd |
|- ( X e. CC -> ( 3 x. ( ( 2 BernPoly X ) / 2 ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) |
129 |
100 128
|
sylan9eqr |
|- ( ( X e. CC /\ k = 2 ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) |
130 |
|
mulcl |
|- ( ( ( 3 / 2 ) e. CC /\ ( X ^ 2 ) e. CC ) -> ( ( 3 / 2 ) x. ( X ^ 2 ) ) e. CC ) |
131 |
108 113 130
|
sylancr |
|- ( X e. CC -> ( ( 3 / 2 ) x. ( X ^ 2 ) ) e. CC ) |
132 |
|
mulcl |
|- ( ( ( 3 / 2 ) e. CC /\ ( X - ( 1 / 6 ) ) e. CC ) -> ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) e. CC ) |
133 |
108 124 132
|
sylancr |
|- ( X e. CC -> ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) e. CC ) |
134 |
131 133
|
subcld |
|- ( X e. CC -> ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) e. CC ) |
135 |
134
|
adantr |
|- ( ( X e. CC /\ k = 2 ) -> ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) e. CC ) |
136 |
129 135
|
eqeltrd |
|- ( ( X e. CC /\ k = 2 ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) e. CC ) |
137 |
52 79 136
|
3jaodan |
|- ( ( X e. CC /\ ( k = 0 \/ k = 1 \/ k = 2 ) ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) e. CC ) |
138 |
27 137
|
sylan2b |
|- ( ( X e. CC /\ k e. ( 0 ... ( 1 + 1 ) ) ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) e. CC ) |
139 |
5
|
eqeq2i |
|- ( k = 2 <-> k = ( 1 + 1 ) ) |
140 |
139 100
|
sylbir |
|- ( k = ( 1 + 1 ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( 3 x. ( ( 2 BernPoly X ) / 2 ) ) ) |
141 |
10 138 140
|
fsump1 |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 1 + 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( sum_ k e. ( 0 ... 1 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) + ( 3 x. ( ( 2 BernPoly X ) / 2 ) ) ) ) |
142 |
128
|
oveq2d |
|- ( X e. CC -> ( sum_ k e. ( 0 ... 1 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) + ( 3 x. ( ( 2 BernPoly X ) / 2 ) ) ) = ( sum_ k e. ( 0 ... 1 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) + ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) ) |
143 |
15
|
sumeq1i |
|- sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = sum_ k e. ( 0 ... 1 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) |
144 |
|
0nn0 |
|- 0 e. NN0 |
145 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
146 |
144 145
|
eleqtri |
|- 0 e. ( ZZ>= ` 0 ) |
147 |
146
|
a1i |
|- ( X e. CC -> 0 e. ( ZZ>= ` 0 ) ) |
148 |
13 16
|
eqtri |
|- ( 0 ... ( 0 + 1 ) ) = { 0 , 1 } |
149 |
148
|
eleq2i |
|- ( k e. ( 0 ... ( 0 + 1 ) ) <-> k e. { 0 , 1 } ) |
150 |
25
|
elpr |
|- ( k e. { 0 , 1 } <-> ( k = 0 \/ k = 1 ) ) |
151 |
149 150
|
bitri |
|- ( k e. ( 0 ... ( 0 + 1 ) ) <-> ( k = 0 \/ k = 1 ) ) |
152 |
52 79
|
jaodan |
|- ( ( X e. CC /\ ( k = 0 \/ k = 1 ) ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) e. CC ) |
153 |
151 152
|
sylan2b |
|- ( ( X e. CC /\ k e. ( 0 ... ( 0 + 1 ) ) ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) e. CC ) |
154 |
14
|
eqeq2i |
|- ( k = ( 0 + 1 ) <-> k = 1 ) |
155 |
154 65
|
sylbi |
|- ( k = ( 0 + 1 ) -> ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( 3 x. ( ( 1 BernPoly X ) / 3 ) ) ) |
156 |
147 153 155
|
fsump1 |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( sum_ k e. ( 0 ... 0 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) + ( 3 x. ( ( 1 BernPoly X ) / 3 ) ) ) ) |
157 |
50 48
|
eqeltrdi |
|- ( X e. CC -> ( 1 x. ( ( 0 BernPoly X ) / 4 ) ) e. CC ) |
158 |
42
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( 1 x. ( ( 0 BernPoly X ) / 4 ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( 1 x. ( ( 0 BernPoly X ) / 4 ) ) ) |
159 |
11 157 158
|
sylancr |
|- ( X e. CC -> sum_ k e. ( 0 ... 0 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( 1 x. ( ( 0 BernPoly X ) / 4 ) ) ) |
160 |
159 50
|
eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... 0 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( 1 / 4 ) ) |
161 |
160 76
|
oveq12d |
|- ( X e. CC -> ( sum_ k e. ( 0 ... 0 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) + ( 3 x. ( ( 1 BernPoly X ) / 3 ) ) ) = ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) ) |
162 |
156 161
|
eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) ) |
163 |
143 162
|
eqtr3id |
|- ( X e. CC -> sum_ k e. ( 0 ... 1 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) ) |
164 |
163
|
oveq1d |
|- ( X e. CC -> ( sum_ k e. ( 0 ... 1 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) + ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) = ( ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) + ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) ) |
165 |
|
addcl |
|- ( ( ( 1 / 4 ) e. CC /\ ( X - ( 1 / 2 ) ) e. CC ) -> ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) e. CC ) |
166 |
48 71 165
|
sylancr |
|- ( X e. CC -> ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) e. CC ) |
167 |
166 131 133
|
addsub12d |
|- ( X e. CC -> ( ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) + ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) + ( ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) ) |
168 |
164 167
|
eqtrd |
|- ( X e. CC -> ( sum_ k e. ( 0 ... 1 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) + ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) + ( ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) ) |
169 |
133 166
|
negsubdi2d |
|- ( X e. CC -> -u ( ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) - ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) ) = ( ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) |
170 |
|
subdi |
|- ( ( ( 3 / 2 ) e. CC /\ X e. CC /\ ( 1 / 6 ) e. CC ) -> ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) = ( ( ( 3 / 2 ) x. X ) - ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) ) |
171 |
108 118 170
|
mp3an13 |
|- ( X e. CC -> ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) = ( ( ( 3 / 2 ) x. X ) - ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) ) |
172 |
|
addsub12 |
|- ( ( ( 1 / 4 ) e. CC /\ X e. CC /\ ( 1 / 2 ) e. CC ) -> ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) = ( X + ( ( 1 / 4 ) - ( 1 / 2 ) ) ) ) |
173 |
48 69 172
|
mp3an13 |
|- ( X e. CC -> ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) = ( X + ( ( 1 / 4 ) - ( 1 / 2 ) ) ) ) |
174 |
171 173
|
oveq12d |
|- ( X e. CC -> ( ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) - ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) ) = ( ( ( ( 3 / 2 ) x. X ) - ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) - ( X + ( ( 1 / 4 ) - ( 1 / 2 ) ) ) ) ) |
175 |
|
mulcl |
|- ( ( ( 3 / 2 ) e. CC /\ X e. CC ) -> ( ( 3 / 2 ) x. X ) e. CC ) |
176 |
108 175
|
mpan |
|- ( X e. CC -> ( ( 3 / 2 ) x. X ) e. CC ) |
177 |
108 118
|
mulcli |
|- ( ( 3 / 2 ) x. ( 1 / 6 ) ) e. CC |
178 |
|
negsub |
|- ( ( ( ( 3 / 2 ) x. X ) e. CC /\ ( ( 3 / 2 ) x. ( 1 / 6 ) ) e. CC ) -> ( ( ( 3 / 2 ) x. X ) + -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) = ( ( ( 3 / 2 ) x. X ) - ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) ) |
179 |
176 177 178
|
sylancl |
|- ( X e. CC -> ( ( ( 3 / 2 ) x. X ) + -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) = ( ( ( 3 / 2 ) x. X ) - ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) ) |
180 |
179
|
oveq1d |
|- ( X e. CC -> ( ( ( ( 3 / 2 ) x. X ) + -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) - ( X + ( ( 1 / 4 ) - ( 1 / 2 ) ) ) ) = ( ( ( ( 3 / 2 ) x. X ) - ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) - ( X + ( ( 1 / 4 ) - ( 1 / 2 ) ) ) ) ) |
181 |
69 48
|
negsubdi2i |
|- -u ( ( 1 / 2 ) - ( 1 / 4 ) ) = ( ( 1 / 4 ) - ( 1 / 2 ) ) |
182 |
85 35 85
|
mul12i |
|- ( 2 x. ( 3 x. 2 ) ) = ( 3 x. ( 2 x. 2 ) ) |
183 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
184 |
183
|
oveq2i |
|- ( 2 x. ( 3 x. 2 ) ) = ( 2 x. 6 ) |
185 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
186 |
185
|
oveq2i |
|- ( 3 x. ( 2 x. 2 ) ) = ( 3 x. 4 ) |
187 |
182 184 186
|
3eqtr3i |
|- ( 2 x. 6 ) = ( 3 x. 4 ) |
188 |
187
|
oveq2i |
|- ( ( 3 x. 1 ) / ( 2 x. 6 ) ) = ( ( 3 x. 1 ) / ( 3 x. 4 ) ) |
189 |
46 47
|
pm3.2i |
|- ( 4 e. CC /\ 4 =/= 0 ) |
190 |
35 72
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
191 |
|
divcan5 |
|- ( ( 1 e. CC /\ ( 4 e. CC /\ 4 =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 3 x. 1 ) / ( 3 x. 4 ) ) = ( 1 / 4 ) ) |
192 |
60 189 190 191
|
mp3an |
|- ( ( 3 x. 1 ) / ( 3 x. 4 ) ) = ( 1 / 4 ) |
193 |
188 192
|
eqtri |
|- ( ( 3 x. 1 ) / ( 2 x. 6 ) ) = ( 1 / 4 ) |
194 |
35 85 60 114 86 117
|
divmuldivi |
|- ( ( 3 / 2 ) x. ( 1 / 6 ) ) = ( ( 3 x. 1 ) / ( 2 x. 6 ) ) |
195 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
196 |
195 5
|
eqtri |
|- ( 2 x. 1 ) = ( 1 + 1 ) |
197 |
196 185
|
oveq12i |
|- ( ( 2 x. 1 ) / ( 2 x. 2 ) ) = ( ( 1 + 1 ) / 4 ) |
198 |
|
divcan5 |
|- ( ( 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 1 ) / ( 2 x. 2 ) ) = ( 1 / 2 ) ) |
199 |
60 104 104 198
|
mp3an |
|- ( ( 2 x. 1 ) / ( 2 x. 2 ) ) = ( 1 / 2 ) |
200 |
60 60 46 47
|
divdiri |
|- ( ( 1 + 1 ) / 4 ) = ( ( 1 / 4 ) + ( 1 / 4 ) ) |
201 |
197 199 200
|
3eqtr3ri |
|- ( ( 1 / 4 ) + ( 1 / 4 ) ) = ( 1 / 2 ) |
202 |
69 48 48 201
|
subaddrii |
|- ( ( 1 / 2 ) - ( 1 / 4 ) ) = ( 1 / 4 ) |
203 |
193 194 202
|
3eqtr4ri |
|- ( ( 1 / 2 ) - ( 1 / 4 ) ) = ( ( 3 / 2 ) x. ( 1 / 6 ) ) |
204 |
203
|
negeqi |
|- -u ( ( 1 / 2 ) - ( 1 / 4 ) ) = -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) |
205 |
181 204
|
eqtr3i |
|- ( ( 1 / 4 ) - ( 1 / 2 ) ) = -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) |
206 |
48 69
|
subcli |
|- ( ( 1 / 4 ) - ( 1 / 2 ) ) e. CC |
207 |
177
|
negcli |
|- -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) e. CC |
208 |
206 207
|
subeq0i |
|- ( ( ( ( 1 / 4 ) - ( 1 / 2 ) ) - -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) = 0 <-> ( ( 1 / 4 ) - ( 1 / 2 ) ) = -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) |
209 |
205 208
|
mpbir |
|- ( ( ( 1 / 4 ) - ( 1 / 2 ) ) - -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) = 0 |
210 |
209
|
oveq2i |
|- ( ( ( ( 3 / 2 ) x. X ) - X ) - ( ( ( 1 / 4 ) - ( 1 / 2 ) ) - -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) ) = ( ( ( ( 3 / 2 ) x. X ) - X ) - 0 ) |
211 |
|
id |
|- ( X e. CC -> X e. CC ) |
212 |
206
|
a1i |
|- ( X e. CC -> ( ( 1 / 4 ) - ( 1 / 2 ) ) e. CC ) |
213 |
207
|
a1i |
|- ( X e. CC -> -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) e. CC ) |
214 |
176 211 212 213
|
subadd4d |
|- ( X e. CC -> ( ( ( ( 3 / 2 ) x. X ) - X ) - ( ( ( 1 / 4 ) - ( 1 / 2 ) ) - -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) ) = ( ( ( ( 3 / 2 ) x. X ) + -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) - ( X + ( ( 1 / 4 ) - ( 1 / 2 ) ) ) ) ) |
215 |
|
subdir |
|- ( ( ( 3 / 2 ) e. CC /\ 1 e. CC /\ X e. CC ) -> ( ( ( 3 / 2 ) - 1 ) x. X ) = ( ( ( 3 / 2 ) x. X ) - ( 1 x. X ) ) ) |
216 |
108 60 215
|
mp3an12 |
|- ( X e. CC -> ( ( ( 3 / 2 ) - 1 ) x. X ) = ( ( ( 3 / 2 ) x. X ) - ( 1 x. X ) ) ) |
217 |
|
divsubdir |
|- ( ( 3 e. CC /\ 2 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 3 - 2 ) / 2 ) = ( ( 3 / 2 ) - ( 2 / 2 ) ) ) |
218 |
35 85 104 217
|
mp3an |
|- ( ( 3 - 2 ) / 2 ) = ( ( 3 / 2 ) - ( 2 / 2 ) ) |
219 |
95
|
oveq1i |
|- ( ( 3 - 2 ) / 2 ) = ( 1 / 2 ) |
220 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
221 |
220
|
oveq2i |
|- ( ( 3 / 2 ) - ( 2 / 2 ) ) = ( ( 3 / 2 ) - 1 ) |
222 |
218 219 221
|
3eqtr3ri |
|- ( ( 3 / 2 ) - 1 ) = ( 1 / 2 ) |
223 |
222
|
oveq1i |
|- ( ( ( 3 / 2 ) - 1 ) x. X ) = ( ( 1 / 2 ) x. X ) |
224 |
223
|
a1i |
|- ( X e. CC -> ( ( ( 3 / 2 ) - 1 ) x. X ) = ( ( 1 / 2 ) x. X ) ) |
225 |
|
mulid2 |
|- ( X e. CC -> ( 1 x. X ) = X ) |
226 |
225
|
oveq2d |
|- ( X e. CC -> ( ( ( 3 / 2 ) x. X ) - ( 1 x. X ) ) = ( ( ( 3 / 2 ) x. X ) - X ) ) |
227 |
216 224 226
|
3eqtr3rd |
|- ( X e. CC -> ( ( ( 3 / 2 ) x. X ) - X ) = ( ( 1 / 2 ) x. X ) ) |
228 |
227
|
oveq1d |
|- ( X e. CC -> ( ( ( ( 3 / 2 ) x. X ) - X ) - 0 ) = ( ( ( 1 / 2 ) x. X ) - 0 ) ) |
229 |
|
mulcl |
|- ( ( ( 1 / 2 ) e. CC /\ X e. CC ) -> ( ( 1 / 2 ) x. X ) e. CC ) |
230 |
69 229
|
mpan |
|- ( X e. CC -> ( ( 1 / 2 ) x. X ) e. CC ) |
231 |
230
|
subid1d |
|- ( X e. CC -> ( ( ( 1 / 2 ) x. X ) - 0 ) = ( ( 1 / 2 ) x. X ) ) |
232 |
228 231
|
eqtrd |
|- ( X e. CC -> ( ( ( ( 3 / 2 ) x. X ) - X ) - 0 ) = ( ( 1 / 2 ) x. X ) ) |
233 |
210 214 232
|
3eqtr3a |
|- ( X e. CC -> ( ( ( ( 3 / 2 ) x. X ) + -u ( ( 3 / 2 ) x. ( 1 / 6 ) ) ) - ( X + ( ( 1 / 4 ) - ( 1 / 2 ) ) ) ) = ( ( 1 / 2 ) x. X ) ) |
234 |
174 180 233
|
3eqtr2d |
|- ( X e. CC -> ( ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) - ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) ) = ( ( 1 / 2 ) x. X ) ) |
235 |
234
|
negeqd |
|- ( X e. CC -> -u ( ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) - ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) ) = -u ( ( 1 / 2 ) x. X ) ) |
236 |
169 235
|
eqtr3d |
|- ( X e. CC -> ( ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) = -u ( ( 1 / 2 ) x. X ) ) |
237 |
236
|
oveq2d |
|- ( X e. CC -> ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) + ( ( ( 1 / 4 ) + ( X - ( 1 / 2 ) ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) + -u ( ( 1 / 2 ) x. X ) ) ) |
238 |
131 230
|
negsubd |
|- ( X e. CC -> ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) + -u ( ( 1 / 2 ) x. X ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 1 / 2 ) x. X ) ) ) |
239 |
168 237 238
|
3eqtrd |
|- ( X e. CC -> ( sum_ k e. ( 0 ... 1 ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) + ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 3 / 2 ) x. ( X - ( 1 / 6 ) ) ) ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 1 / 2 ) x. X ) ) ) |
240 |
141 142 239
|
3eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 1 + 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 1 / 2 ) x. X ) ) ) |
241 |
8 240
|
eqtrid |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 3 - 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) = ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 1 / 2 ) x. X ) ) ) |
242 |
241
|
oveq2d |
|- ( X e. CC -> ( ( X ^ 3 ) - sum_ k e. ( 0 ... ( 3 - 1 ) ) ( ( 3 _C k ) x. ( ( k BernPoly X ) / ( ( 3 - k ) + 1 ) ) ) ) = ( ( X ^ 3 ) - ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 1 / 2 ) x. X ) ) ) ) |
243 |
|
expcl |
|- ( ( X e. CC /\ 3 e. NN0 ) -> ( X ^ 3 ) e. CC ) |
244 |
1 243
|
mpan2 |
|- ( X e. CC -> ( X ^ 3 ) e. CC ) |
245 |
244 131 230
|
subsubd |
|- ( X e. CC -> ( ( X ^ 3 ) - ( ( ( 3 / 2 ) x. ( X ^ 2 ) ) - ( ( 1 / 2 ) x. X ) ) ) = ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) |
246 |
3 242 245
|
3eqtrd |
|- ( X e. CC -> ( 3 BernPoly X ) = ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) |