Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( n = k -> ( n BernPoly ( X + 1 ) ) = ( k BernPoly ( X + 1 ) ) ) |
2 |
|
oveq1 |
|- ( n = k -> ( n BernPoly X ) = ( k BernPoly X ) ) |
3 |
1 2
|
oveq12d |
|- ( n = k -> ( ( n BernPoly ( X + 1 ) ) - ( n BernPoly X ) ) = ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) ) |
4 |
|
id |
|- ( n = k -> n = k ) |
5 |
|
oveq1 |
|- ( n = k -> ( n - 1 ) = ( k - 1 ) ) |
6 |
5
|
oveq2d |
|- ( n = k -> ( X ^ ( n - 1 ) ) = ( X ^ ( k - 1 ) ) ) |
7 |
4 6
|
oveq12d |
|- ( n = k -> ( n x. ( X ^ ( n - 1 ) ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) |
8 |
3 7
|
eqeq12d |
|- ( n = k -> ( ( ( n BernPoly ( X + 1 ) ) - ( n BernPoly X ) ) = ( n x. ( X ^ ( n - 1 ) ) ) <-> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) ) |
9 |
8
|
imbi2d |
|- ( n = k -> ( ( X e. CC -> ( ( n BernPoly ( X + 1 ) ) - ( n BernPoly X ) ) = ( n x. ( X ^ ( n - 1 ) ) ) ) <-> ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) ) ) |
10 |
|
oveq1 |
|- ( n = N -> ( n BernPoly ( X + 1 ) ) = ( N BernPoly ( X + 1 ) ) ) |
11 |
|
oveq1 |
|- ( n = N -> ( n BernPoly X ) = ( N BernPoly X ) ) |
12 |
10 11
|
oveq12d |
|- ( n = N -> ( ( n BernPoly ( X + 1 ) ) - ( n BernPoly X ) ) = ( ( N BernPoly ( X + 1 ) ) - ( N BernPoly X ) ) ) |
13 |
|
id |
|- ( n = N -> n = N ) |
14 |
|
oveq1 |
|- ( n = N -> ( n - 1 ) = ( N - 1 ) ) |
15 |
14
|
oveq2d |
|- ( n = N -> ( X ^ ( n - 1 ) ) = ( X ^ ( N - 1 ) ) ) |
16 |
13 15
|
oveq12d |
|- ( n = N -> ( n x. ( X ^ ( n - 1 ) ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) |
17 |
12 16
|
eqeq12d |
|- ( n = N -> ( ( ( n BernPoly ( X + 1 ) ) - ( n BernPoly X ) ) = ( n x. ( X ^ ( n - 1 ) ) ) <-> ( ( N BernPoly ( X + 1 ) ) - ( N BernPoly X ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) ) |
18 |
17
|
imbi2d |
|- ( n = N -> ( ( X e. CC -> ( ( n BernPoly ( X + 1 ) ) - ( n BernPoly X ) ) = ( n x. ( X ^ ( n - 1 ) ) ) ) <-> ( X e. CC -> ( ( N BernPoly ( X + 1 ) ) - ( N BernPoly X ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) ) ) |
19 |
|
simp1 |
|- ( ( n e. NN /\ A. k e. ( 1 ... ( n - 1 ) ) ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) /\ X e. CC ) -> n e. NN ) |
20 |
|
simp3 |
|- ( ( n e. NN /\ A. k e. ( 1 ... ( n - 1 ) ) ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) /\ X e. CC ) -> X e. CC ) |
21 |
|
simpl3 |
|- ( ( ( n e. NN /\ A. k e. ( 1 ... ( n - 1 ) ) ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) /\ X e. CC ) /\ m e. ( 1 ... ( n - 1 ) ) ) -> X e. CC ) |
22 |
|
oveq1 |
|- ( k = m -> ( k BernPoly ( X + 1 ) ) = ( m BernPoly ( X + 1 ) ) ) |
23 |
|
oveq1 |
|- ( k = m -> ( k BernPoly X ) = ( m BernPoly X ) ) |
24 |
22 23
|
oveq12d |
|- ( k = m -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( ( m BernPoly ( X + 1 ) ) - ( m BernPoly X ) ) ) |
25 |
|
id |
|- ( k = m -> k = m ) |
26 |
|
oveq1 |
|- ( k = m -> ( k - 1 ) = ( m - 1 ) ) |
27 |
26
|
oveq2d |
|- ( k = m -> ( X ^ ( k - 1 ) ) = ( X ^ ( m - 1 ) ) ) |
28 |
25 27
|
oveq12d |
|- ( k = m -> ( k x. ( X ^ ( k - 1 ) ) ) = ( m x. ( X ^ ( m - 1 ) ) ) ) |
29 |
24 28
|
eqeq12d |
|- ( k = m -> ( ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) <-> ( ( m BernPoly ( X + 1 ) ) - ( m BernPoly X ) ) = ( m x. ( X ^ ( m - 1 ) ) ) ) ) |
30 |
29
|
imbi2d |
|- ( k = m -> ( ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) <-> ( X e. CC -> ( ( m BernPoly ( X + 1 ) ) - ( m BernPoly X ) ) = ( m x. ( X ^ ( m - 1 ) ) ) ) ) ) |
31 |
30
|
rspccva |
|- ( ( A. k e. ( 1 ... ( n - 1 ) ) ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) /\ m e. ( 1 ... ( n - 1 ) ) ) -> ( X e. CC -> ( ( m BernPoly ( X + 1 ) ) - ( m BernPoly X ) ) = ( m x. ( X ^ ( m - 1 ) ) ) ) ) |
32 |
31
|
3ad2antl2 |
|- ( ( ( n e. NN /\ A. k e. ( 1 ... ( n - 1 ) ) ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) /\ X e. CC ) /\ m e. ( 1 ... ( n - 1 ) ) ) -> ( X e. CC -> ( ( m BernPoly ( X + 1 ) ) - ( m BernPoly X ) ) = ( m x. ( X ^ ( m - 1 ) ) ) ) ) |
33 |
21 32
|
mpd |
|- ( ( ( n e. NN /\ A. k e. ( 1 ... ( n - 1 ) ) ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) /\ X e. CC ) /\ m e. ( 1 ... ( n - 1 ) ) ) -> ( ( m BernPoly ( X + 1 ) ) - ( m BernPoly X ) ) = ( m x. ( X ^ ( m - 1 ) ) ) ) |
34 |
19 20 33
|
bpolydiflem |
|- ( ( n e. NN /\ A. k e. ( 1 ... ( n - 1 ) ) ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) /\ X e. CC ) -> ( ( n BernPoly ( X + 1 ) ) - ( n BernPoly X ) ) = ( n x. ( X ^ ( n - 1 ) ) ) ) |
35 |
34
|
3exp |
|- ( n e. NN -> ( A. k e. ( 1 ... ( n - 1 ) ) ( X e. CC -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) -> ( X e. CC -> ( ( n BernPoly ( X + 1 ) ) - ( n BernPoly X ) ) = ( n x. ( X ^ ( n - 1 ) ) ) ) ) ) |
36 |
9 18 35
|
nnsinds |
|- ( N e. NN -> ( X e. CC -> ( ( N BernPoly ( X + 1 ) ) - ( N BernPoly X ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) ) |
37 |
36
|
imp |
|- ( ( N e. NN /\ X e. CC ) -> ( ( N BernPoly ( X + 1 ) ) - ( N BernPoly X ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) |