Step |
Hyp |
Ref |
Expression |
1 |
|
bpolydiflem.1 |
|- ( ph -> N e. NN ) |
2 |
|
bpolydiflem.2 |
|- ( ph -> X e. CC ) |
3 |
|
bpolydiflem.3 |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) = ( k x. ( X ^ ( k - 1 ) ) ) ) |
4 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
5 |
|
peano2cn |
|- ( X e. CC -> ( X + 1 ) e. CC ) |
6 |
2 5
|
syl |
|- ( ph -> ( X + 1 ) e. CC ) |
7 |
|
bpolyval |
|- ( ( N e. NN0 /\ ( X + 1 ) e. CC ) -> ( N BernPoly ( X + 1 ) ) = ( ( ( X + 1 ) ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) |
8 |
4 6 7
|
syl2anc |
|- ( ph -> ( N BernPoly ( X + 1 ) ) = ( ( ( X + 1 ) ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) |
9 |
|
bpolyval |
|- ( ( N e. NN0 /\ X e. CC ) -> ( N BernPoly X ) = ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |
10 |
4 2 9
|
syl2anc |
|- ( ph -> ( N BernPoly X ) = ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |
11 |
8 10
|
oveq12d |
|- ( ph -> ( ( N BernPoly ( X + 1 ) ) - ( N BernPoly X ) ) = ( ( ( ( X + 1 ) ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) - ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) ) |
12 |
6 4
|
expcld |
|- ( ph -> ( ( X + 1 ) ^ N ) e. CC ) |
13 |
|
fzfid |
|- ( ph -> ( 0 ... ( N - 1 ) ) e. Fin ) |
14 |
|
elfzelz |
|- ( k e. ( 0 ... ( N - 1 ) ) -> k e. ZZ ) |
15 |
|
bccl |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) |
16 |
4 14 15
|
syl2an |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( N _C k ) e. NN0 ) |
17 |
16
|
nn0cnd |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( N _C k ) e. CC ) |
18 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
19 |
|
bpolycl |
|- ( ( k e. NN0 /\ ( X + 1 ) e. CC ) -> ( k BernPoly ( X + 1 ) ) e. CC ) |
20 |
18 6 19
|
syl2anr |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k BernPoly ( X + 1 ) ) e. CC ) |
21 |
|
fzssp1 |
|- ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) |
22 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
23 |
|
ax-1cn |
|- 1 e. CC |
24 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
25 |
22 23 24
|
sylancl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
26 |
25
|
oveq2d |
|- ( ph -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) |
27 |
21 26
|
sseqtrid |
|- ( ph -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
28 |
27
|
sselda |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. ( 0 ... N ) ) |
29 |
|
fznn0sub |
|- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
30 |
28 29
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( N - k ) e. NN0 ) |
31 |
|
nn0p1nn |
|- ( ( N - k ) e. NN0 -> ( ( N - k ) + 1 ) e. NN ) |
32 |
30 31
|
syl |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) e. NN ) |
33 |
32
|
nncnd |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) e. CC ) |
34 |
32
|
nnne0d |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) =/= 0 ) |
35 |
20 33 34
|
divcld |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) e. CC ) |
36 |
17 35
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
37 |
13 36
|
fsumcl |
|- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
38 |
2 4
|
expcld |
|- ( ph -> ( X ^ N ) e. CC ) |
39 |
|
bpolycl |
|- ( ( k e. NN0 /\ X e. CC ) -> ( k BernPoly X ) e. CC ) |
40 |
18 2 39
|
syl2anr |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k BernPoly X ) e. CC ) |
41 |
40 33 34
|
divcld |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) e. CC ) |
42 |
17 41
|
mulcld |
|- ( ( ph /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
43 |
13 42
|
fsumcl |
|- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
44 |
12 37 38 43
|
sub4d |
|- ( ph -> ( ( ( ( X + 1 ) ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) - ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) = ( ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) - ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) ) |
45 |
27
|
sselda |
|- ( ( ph /\ m e. ( 0 ... ( N - 1 ) ) ) -> m e. ( 0 ... N ) ) |
46 |
|
bccl2 |
|- ( m e. ( 0 ... N ) -> ( N _C m ) e. NN ) |
47 |
46
|
adantl |
|- ( ( ph /\ m e. ( 0 ... N ) ) -> ( N _C m ) e. NN ) |
48 |
47
|
nncnd |
|- ( ( ph /\ m e. ( 0 ... N ) ) -> ( N _C m ) e. CC ) |
49 |
|
elfznn0 |
|- ( m e. ( 0 ... N ) -> m e. NN0 ) |
50 |
|
expcl |
|- ( ( X e. CC /\ m e. NN0 ) -> ( X ^ m ) e. CC ) |
51 |
2 49 50
|
syl2an |
|- ( ( ph /\ m e. ( 0 ... N ) ) -> ( X ^ m ) e. CC ) |
52 |
48 51
|
mulcld |
|- ( ( ph /\ m e. ( 0 ... N ) ) -> ( ( N _C m ) x. ( X ^ m ) ) e. CC ) |
53 |
45 52
|
syldan |
|- ( ( ph /\ m e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C m ) x. ( X ^ m ) ) e. CC ) |
54 |
13 53
|
fsumcl |
|- ( ph -> sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) e. CC ) |
55 |
|
addcom |
|- ( ( X e. CC /\ 1 e. CC ) -> ( X + 1 ) = ( 1 + X ) ) |
56 |
2 23 55
|
sylancl |
|- ( ph -> ( X + 1 ) = ( 1 + X ) ) |
57 |
56
|
oveq1d |
|- ( ph -> ( ( X + 1 ) ^ N ) = ( ( 1 + X ) ^ N ) ) |
58 |
|
binom1p |
|- ( ( X e. CC /\ N e. NN0 ) -> ( ( 1 + X ) ^ N ) = sum_ m e. ( 0 ... N ) ( ( N _C m ) x. ( X ^ m ) ) ) |
59 |
2 4 58
|
syl2anc |
|- ( ph -> ( ( 1 + X ) ^ N ) = sum_ m e. ( 0 ... N ) ( ( N _C m ) x. ( X ^ m ) ) ) |
60 |
57 59
|
eqtrd |
|- ( ph -> ( ( X + 1 ) ^ N ) = sum_ m e. ( 0 ... N ) ( ( N _C m ) x. ( X ^ m ) ) ) |
61 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
62 |
4 61
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
63 |
|
oveq2 |
|- ( m = N -> ( N _C m ) = ( N _C N ) ) |
64 |
|
oveq2 |
|- ( m = N -> ( X ^ m ) = ( X ^ N ) ) |
65 |
63 64
|
oveq12d |
|- ( m = N -> ( ( N _C m ) x. ( X ^ m ) ) = ( ( N _C N ) x. ( X ^ N ) ) ) |
66 |
62 52 65
|
fsumm1 |
|- ( ph -> sum_ m e. ( 0 ... N ) ( ( N _C m ) x. ( X ^ m ) ) = ( sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( ( N _C N ) x. ( X ^ N ) ) ) ) |
67 |
|
bcnn |
|- ( N e. NN0 -> ( N _C N ) = 1 ) |
68 |
4 67
|
syl |
|- ( ph -> ( N _C N ) = 1 ) |
69 |
68
|
oveq1d |
|- ( ph -> ( ( N _C N ) x. ( X ^ N ) ) = ( 1 x. ( X ^ N ) ) ) |
70 |
38
|
mulid2d |
|- ( ph -> ( 1 x. ( X ^ N ) ) = ( X ^ N ) ) |
71 |
69 70
|
eqtrd |
|- ( ph -> ( ( N _C N ) x. ( X ^ N ) ) = ( X ^ N ) ) |
72 |
71
|
oveq2d |
|- ( ph -> ( sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( ( N _C N ) x. ( X ^ N ) ) ) = ( sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( X ^ N ) ) ) |
73 |
60 66 72
|
3eqtrd |
|- ( ph -> ( ( X + 1 ) ^ N ) = ( sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( X ^ N ) ) ) |
74 |
54 38 73
|
mvrraddd |
|- ( ph -> ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) = sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) |
75 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
76 |
1 75
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
77 |
76 61
|
eleqtrdi |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
78 |
|
oveq2 |
|- ( m = ( N - 1 ) -> ( N _C m ) = ( N _C ( N - 1 ) ) ) |
79 |
|
oveq2 |
|- ( m = ( N - 1 ) -> ( X ^ m ) = ( X ^ ( N - 1 ) ) ) |
80 |
78 79
|
oveq12d |
|- ( m = ( N - 1 ) -> ( ( N _C m ) x. ( X ^ m ) ) = ( ( N _C ( N - 1 ) ) x. ( X ^ ( N - 1 ) ) ) ) |
81 |
77 53 80
|
fsumm1 |
|- ( ph -> sum_ m e. ( 0 ... ( N - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) = ( sum_ m e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( ( N _C ( N - 1 ) ) x. ( X ^ ( N - 1 ) ) ) ) ) |
82 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
83 |
22 82 82
|
subsub4d |
|- ( ph -> ( ( N - 1 ) - 1 ) = ( N - ( 1 + 1 ) ) ) |
84 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
85 |
84
|
oveq2i |
|- ( N - 2 ) = ( N - ( 1 + 1 ) ) |
86 |
83 85
|
eqtr4di |
|- ( ph -> ( ( N - 1 ) - 1 ) = ( N - 2 ) ) |
87 |
86
|
oveq2d |
|- ( ph -> ( 0 ... ( ( N - 1 ) - 1 ) ) = ( 0 ... ( N - 2 ) ) ) |
88 |
87
|
sumeq1d |
|- ( ph -> sum_ m e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) = sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) |
89 |
|
bcnm1 |
|- ( N e. NN0 -> ( N _C ( N - 1 ) ) = N ) |
90 |
4 89
|
syl |
|- ( ph -> ( N _C ( N - 1 ) ) = N ) |
91 |
90
|
oveq1d |
|- ( ph -> ( ( N _C ( N - 1 ) ) x. ( X ^ ( N - 1 ) ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) |
92 |
88 91
|
oveq12d |
|- ( ph -> ( sum_ m e. ( 0 ... ( ( N - 1 ) - 1 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( ( N _C ( N - 1 ) ) x. ( X ^ ( N - 1 ) ) ) ) = ( sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( N x. ( X ^ ( N - 1 ) ) ) ) ) |
93 |
74 81 92
|
3eqtrd |
|- ( ph -> ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) = ( sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( N x. ( X ^ ( N - 1 ) ) ) ) ) |
94 |
|
oveq2 |
|- ( k = 0 -> ( N _C k ) = ( N _C 0 ) ) |
95 |
|
oveq1 |
|- ( k = 0 -> ( k BernPoly ( X + 1 ) ) = ( 0 BernPoly ( X + 1 ) ) ) |
96 |
|
oveq2 |
|- ( k = 0 -> ( N - k ) = ( N - 0 ) ) |
97 |
96
|
oveq1d |
|- ( k = 0 -> ( ( N - k ) + 1 ) = ( ( N - 0 ) + 1 ) ) |
98 |
95 97
|
oveq12d |
|- ( k = 0 -> ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) = ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) |
99 |
94 98
|
oveq12d |
|- ( k = 0 -> ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) = ( ( N _C 0 ) x. ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) ) |
100 |
77 36 99
|
fsum1p |
|- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) = ( ( ( N _C 0 ) x. ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) |
101 |
|
bpoly0 |
|- ( ( X + 1 ) e. CC -> ( 0 BernPoly ( X + 1 ) ) = 1 ) |
102 |
6 101
|
syl |
|- ( ph -> ( 0 BernPoly ( X + 1 ) ) = 1 ) |
103 |
102
|
oveq1d |
|- ( ph -> ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) = ( 1 / ( ( N - 0 ) + 1 ) ) ) |
104 |
103
|
oveq2d |
|- ( ph -> ( ( N _C 0 ) x. ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) = ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) ) |
105 |
104
|
oveq1d |
|- ( ph -> ( ( ( N _C 0 ) x. ( ( 0 BernPoly ( X + 1 ) ) / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) |
106 |
100 105
|
eqtrd |
|- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) = ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) ) |
107 |
|
oveq1 |
|- ( k = 0 -> ( k BernPoly X ) = ( 0 BernPoly X ) ) |
108 |
107 97
|
oveq12d |
|- ( k = 0 -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) = ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) |
109 |
94 108
|
oveq12d |
|- ( k = 0 -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( N _C 0 ) x. ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) ) |
110 |
77 42 109
|
fsum1p |
|- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( ( N _C 0 ) x. ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |
111 |
|
bpoly0 |
|- ( X e. CC -> ( 0 BernPoly X ) = 1 ) |
112 |
2 111
|
syl |
|- ( ph -> ( 0 BernPoly X ) = 1 ) |
113 |
112
|
oveq1d |
|- ( ph -> ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) = ( 1 / ( ( N - 0 ) + 1 ) ) ) |
114 |
113
|
oveq2d |
|- ( ph -> ( ( N _C 0 ) x. ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) = ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) ) |
115 |
114
|
oveq1d |
|- ( ph -> ( ( ( N _C 0 ) x. ( ( 0 BernPoly X ) / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |
116 |
110 115
|
eqtrd |
|- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |
117 |
106 116
|
oveq12d |
|- ( ph -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) - ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) ) |
118 |
|
0z |
|- 0 e. ZZ |
119 |
|
bccl |
|- ( ( N e. NN0 /\ 0 e. ZZ ) -> ( N _C 0 ) e. NN0 ) |
120 |
4 118 119
|
sylancl |
|- ( ph -> ( N _C 0 ) e. NN0 ) |
121 |
120
|
nn0cnd |
|- ( ph -> ( N _C 0 ) e. CC ) |
122 |
22
|
subid1d |
|- ( ph -> ( N - 0 ) = N ) |
123 |
122 1
|
eqeltrd |
|- ( ph -> ( N - 0 ) e. NN ) |
124 |
123
|
peano2nnd |
|- ( ph -> ( ( N - 0 ) + 1 ) e. NN ) |
125 |
124
|
nnrecred |
|- ( ph -> ( 1 / ( ( N - 0 ) + 1 ) ) e. RR ) |
126 |
125
|
recnd |
|- ( ph -> ( 1 / ( ( N - 0 ) + 1 ) ) e. CC ) |
127 |
121 126
|
mulcld |
|- ( ph -> ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) e. CC ) |
128 |
|
fzfid |
|- ( ph -> ( ( 0 + 1 ) ... ( N - 1 ) ) e. Fin ) |
129 |
|
fzp1ss |
|- ( 0 e. ZZ -> ( ( 0 + 1 ) ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) |
130 |
118 129
|
ax-mp |
|- ( ( 0 + 1 ) ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) |
131 |
130
|
sseli |
|- ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) -> k e. ( 0 ... ( N - 1 ) ) ) |
132 |
131 36
|
sylan2 |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
133 |
128 132
|
fsumcl |
|- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
134 |
131 42
|
sylan2 |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
135 |
128 134
|
fsumcl |
|- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
136 |
127 133 135
|
pnpcand |
|- ( ph -> ( ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) ) - ( ( ( N _C 0 ) x. ( 1 / ( ( N - 0 ) + 1 ) ) ) + sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |
137 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
138 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
139 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
140 |
|
2z |
|- 2 e. ZZ |
141 |
|
zsubcl |
|- ( ( N e. ZZ /\ 2 e. ZZ ) -> ( N - 2 ) e. ZZ ) |
142 |
139 140 141
|
sylancl |
|- ( ph -> ( N - 2 ) e. ZZ ) |
143 |
|
fzssp1 |
|- ( 0 ... ( N - 2 ) ) C_ ( 0 ... ( ( N - 2 ) + 1 ) ) |
144 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
145 |
22 144 82
|
subsubd |
|- ( ph -> ( N - ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) ) |
146 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
147 |
146
|
oveq2i |
|- ( N - ( 2 - 1 ) ) = ( N - 1 ) |
148 |
145 147
|
eqtr3di |
|- ( ph -> ( ( N - 2 ) + 1 ) = ( N - 1 ) ) |
149 |
148
|
oveq2d |
|- ( ph -> ( 0 ... ( ( N - 2 ) + 1 ) ) = ( 0 ... ( N - 1 ) ) ) |
150 |
143 149
|
sseqtrid |
|- ( ph -> ( 0 ... ( N - 2 ) ) C_ ( 0 ... ( N - 1 ) ) ) |
151 |
150
|
sselda |
|- ( ( ph /\ m e. ( 0 ... ( N - 2 ) ) ) -> m e. ( 0 ... ( N - 1 ) ) ) |
152 |
151 53
|
syldan |
|- ( ( ph /\ m e. ( 0 ... ( N - 2 ) ) ) -> ( ( N _C m ) x. ( X ^ m ) ) e. CC ) |
153 |
|
oveq2 |
|- ( m = ( k - 1 ) -> ( N _C m ) = ( N _C ( k - 1 ) ) ) |
154 |
|
oveq2 |
|- ( m = ( k - 1 ) -> ( X ^ m ) = ( X ^ ( k - 1 ) ) ) |
155 |
153 154
|
oveq12d |
|- ( m = ( k - 1 ) -> ( ( N _C m ) x. ( X ^ m ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
156 |
137 138 142 152 155
|
fsumshft |
|- ( ph -> sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) = sum_ k e. ( ( 0 + 1 ) ... ( ( N - 2 ) + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
157 |
148
|
oveq2d |
|- ( ph -> ( ( 0 + 1 ) ... ( ( N - 2 ) + 1 ) ) = ( ( 0 + 1 ) ... ( N - 1 ) ) ) |
158 |
157
|
sumeq1d |
|- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( ( N - 2 ) + 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
159 |
156 158
|
eqtrd |
|- ( ph -> sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
160 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
161 |
160
|
oveq1i |
|- ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) |
162 |
161
|
eleq2i |
|- ( k e. ( ( 0 + 1 ) ... ( N - 1 ) ) <-> k e. ( 1 ... ( N - 1 ) ) ) |
163 |
|
fzssp1 |
|- ( 1 ... ( N - 1 ) ) C_ ( 1 ... ( ( N - 1 ) + 1 ) ) |
164 |
25
|
oveq2d |
|- ( ph -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
165 |
163 164
|
sseqtrid |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
166 |
165
|
sselda |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. ( 1 ... N ) ) |
167 |
|
bcm1k |
|- ( k e. ( 1 ... N ) -> ( N _C k ) = ( ( N _C ( k - 1 ) ) x. ( ( N - ( k - 1 ) ) / k ) ) ) |
168 |
166 167
|
syl |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C k ) = ( ( N _C ( k - 1 ) ) x. ( ( N - ( k - 1 ) ) / k ) ) ) |
169 |
1
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> N e. NN ) |
170 |
169
|
nncnd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> N e. CC ) |
171 |
|
elfznn |
|- ( k e. ( 1 ... ( N - 1 ) ) -> k e. NN ) |
172 |
171
|
adantl |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. NN ) |
173 |
172
|
nncnd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> k e. CC ) |
174 |
|
1cnd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> 1 e. CC ) |
175 |
170 173 174
|
subsubd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N - ( k - 1 ) ) = ( ( N - k ) + 1 ) ) |
176 |
175
|
oveq1d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N - ( k - 1 ) ) / k ) = ( ( ( N - k ) + 1 ) / k ) ) |
177 |
176
|
oveq2d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( N - ( k - 1 ) ) / k ) ) = ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) ) |
178 |
168 177
|
eqtrd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C k ) = ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) ) |
179 |
3
|
oveq1d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) / ( ( N - k ) + 1 ) ) = ( ( k x. ( X ^ ( k - 1 ) ) ) / ( ( N - k ) + 1 ) ) ) |
180 |
162 131
|
sylbir |
|- ( k e. ( 1 ... ( N - 1 ) ) -> k e. ( 0 ... ( N - 1 ) ) ) |
181 |
180 20
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k BernPoly ( X + 1 ) ) e. CC ) |
182 |
180 40
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k BernPoly X ) e. CC ) |
183 |
180 33
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) e. CC ) |
184 |
180 34
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N - k ) + 1 ) =/= 0 ) |
185 |
181 182 183 184
|
divsubdird |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( k BernPoly ( X + 1 ) ) - ( k BernPoly X ) ) / ( ( N - k ) + 1 ) ) = ( ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) - ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) |
186 |
2
|
adantr |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> X e. CC ) |
187 |
|
nnm1nn0 |
|- ( k e. NN -> ( k - 1 ) e. NN0 ) |
188 |
172 187
|
syl |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k - 1 ) e. NN0 ) |
189 |
186 188
|
expcld |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( X ^ ( k - 1 ) ) e. CC ) |
190 |
173 189 183 184
|
div23d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k x. ( X ^ ( k - 1 ) ) ) / ( ( N - k ) + 1 ) ) = ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
191 |
179 185 190
|
3eqtr3d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) - ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
192 |
178 191
|
oveq12d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) - ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) ) |
193 |
180 17
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C k ) e. CC ) |
194 |
181 183 184
|
divcld |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) e. CC ) |
195 |
182 183 184
|
divcld |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) e. CC ) |
196 |
193 194 195
|
subdid |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) - ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |
197 |
169
|
nnnn0d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> N e. NN0 ) |
198 |
188
|
nn0zd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k - 1 ) e. ZZ ) |
199 |
|
bccl |
|- ( ( N e. NN0 /\ ( k - 1 ) e. ZZ ) -> ( N _C ( k - 1 ) ) e. NN0 ) |
200 |
197 198 199
|
syl2anc |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C ( k - 1 ) ) e. NN0 ) |
201 |
200
|
nn0cnd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( N _C ( k - 1 ) ) e. CC ) |
202 |
172
|
nnne0d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> k =/= 0 ) |
203 |
183 173 202
|
divcld |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( N - k ) + 1 ) / k ) e. CC ) |
204 |
173 183 184
|
divcld |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( k / ( ( N - k ) + 1 ) ) e. CC ) |
205 |
204 189
|
mulcld |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) e. CC ) |
206 |
201 203 205
|
mulassd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( ( ( ( N - k ) + 1 ) / k ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) ) ) |
207 |
183 173 184 202
|
divcan6d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( ( N - k ) + 1 ) / k ) x. ( k / ( ( N - k ) + 1 ) ) ) = 1 ) |
208 |
207
|
oveq1d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( ( ( N - k ) + 1 ) / k ) x. ( k / ( ( N - k ) + 1 ) ) ) x. ( X ^ ( k - 1 ) ) ) = ( 1 x. ( X ^ ( k - 1 ) ) ) ) |
209 |
203 204 189
|
mulassd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( ( ( N - k ) + 1 ) / k ) x. ( k / ( ( N - k ) + 1 ) ) ) x. ( X ^ ( k - 1 ) ) ) = ( ( ( ( N - k ) + 1 ) / k ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) ) |
210 |
189
|
mulid2d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( 1 x. ( X ^ ( k - 1 ) ) ) = ( X ^ ( k - 1 ) ) ) |
211 |
208 209 210
|
3eqtr3d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( ( N - k ) + 1 ) / k ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) = ( X ^ ( k - 1 ) ) ) |
212 |
211
|
oveq2d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( N _C ( k - 1 ) ) x. ( ( ( ( N - k ) + 1 ) / k ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
213 |
206 212
|
eqtrd |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( N _C ( k - 1 ) ) x. ( ( ( N - k ) + 1 ) / k ) ) x. ( ( k / ( ( N - k ) + 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
214 |
192 196 213
|
3eqtr3d |
|- ( ( ph /\ k e. ( 1 ... ( N - 1 ) ) ) -> ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
215 |
162 214
|
sylan2b |
|- ( ( ph /\ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ) -> ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
216 |
215
|
sumeq2dv |
|- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C ( k - 1 ) ) x. ( X ^ ( k - 1 ) ) ) ) |
217 |
128 132 134
|
fsumsub |
|- ( ph -> sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |
218 |
159 216 217
|
3eqtr2rd |
|- ( ph -> ( sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) |
219 |
117 136 218
|
3eqtrd |
|- ( ph -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) |
220 |
93 219
|
oveq12d |
|- ( ph -> ( ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) - ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) = ( ( sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( N x. ( X ^ ( N - 1 ) ) ) ) - sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) ) |
221 |
|
fzfid |
|- ( ph -> ( 0 ... ( N - 2 ) ) e. Fin ) |
222 |
221 152
|
fsumcl |
|- ( ph -> sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) e. CC ) |
223 |
2 76
|
expcld |
|- ( ph -> ( X ^ ( N - 1 ) ) e. CC ) |
224 |
22 223
|
mulcld |
|- ( ph -> ( N x. ( X ^ ( N - 1 ) ) ) e. CC ) |
225 |
222 224
|
pncan2d |
|- ( ph -> ( ( sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) + ( N x. ( X ^ ( N - 1 ) ) ) ) - sum_ m e. ( 0 ... ( N - 2 ) ) ( ( N _C m ) x. ( X ^ m ) ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) |
226 |
220 225
|
eqtrd |
|- ( ph -> ( ( ( ( X + 1 ) ^ N ) - ( X ^ N ) ) - ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly ( X + 1 ) ) / ( ( N - k ) + 1 ) ) ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) |
227 |
11 44 226
|
3eqtrd |
|- ( ph -> ( ( N BernPoly ( X + 1 ) ) - ( N BernPoly X ) ) = ( N x. ( X ^ ( N - 1 ) ) ) ) |