Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( N e. NN0 /\ X e. CC ) -> N e. NN0 ) |
2 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
3 |
1 2
|
eleqtrdi |
|- ( ( N e. NN0 /\ X e. CC ) -> N e. ( ZZ>= ` 0 ) ) |
4 |
|
elfzelz |
|- ( k e. ( 0 ... N ) -> k e. ZZ ) |
5 |
|
bccl |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) |
6 |
1 4 5
|
syl2an |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. NN0 ) |
7 |
6
|
nn0cnd |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) |
8 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
9 |
|
simpr |
|- ( ( N e. NN0 /\ X e. CC ) -> X e. CC ) |
10 |
|
bpolycl |
|- ( ( k e. NN0 /\ X e. CC ) -> ( k BernPoly X ) e. CC ) |
11 |
8 9 10
|
syl2anr |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( k BernPoly X ) e. CC ) |
12 |
|
fznn0sub |
|- ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) |
13 |
12
|
adantl |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. NN0 ) |
14 |
|
nn0p1nn |
|- ( ( N - k ) e. NN0 -> ( ( N - k ) + 1 ) e. NN ) |
15 |
13 14
|
syl |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) + 1 ) e. NN ) |
16 |
15
|
nncnd |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) + 1 ) e. CC ) |
17 |
15
|
nnne0d |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) + 1 ) =/= 0 ) |
18 |
11 16 17
|
divcld |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) e. CC ) |
19 |
7 18
|
mulcld |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
20 |
|
oveq2 |
|- ( k = N -> ( N _C k ) = ( N _C N ) ) |
21 |
|
oveq1 |
|- ( k = N -> ( k BernPoly X ) = ( N BernPoly X ) ) |
22 |
|
oveq2 |
|- ( k = N -> ( N - k ) = ( N - N ) ) |
23 |
22
|
oveq1d |
|- ( k = N -> ( ( N - k ) + 1 ) = ( ( N - N ) + 1 ) ) |
24 |
21 23
|
oveq12d |
|- ( k = N -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) = ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) |
25 |
20 24
|
oveq12d |
|- ( k = N -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) ) |
26 |
3 19 25
|
fsumm1 |
|- ( ( N e. NN0 /\ X e. CC ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) ) ) |
27 |
|
bcnn |
|- ( N e. NN0 -> ( N _C N ) = 1 ) |
28 |
27
|
adantr |
|- ( ( N e. NN0 /\ X e. CC ) -> ( N _C N ) = 1 ) |
29 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
30 |
29
|
adantr |
|- ( ( N e. NN0 /\ X e. CC ) -> N e. CC ) |
31 |
30
|
subidd |
|- ( ( N e. NN0 /\ X e. CC ) -> ( N - N ) = 0 ) |
32 |
31
|
oveq1d |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( N - N ) + 1 ) = ( 0 + 1 ) ) |
33 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
34 |
32 33
|
eqtrdi |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( N - N ) + 1 ) = 1 ) |
35 |
34
|
oveq2d |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) = ( ( N BernPoly X ) / 1 ) ) |
36 |
|
bpolycl |
|- ( ( N e. NN0 /\ X e. CC ) -> ( N BernPoly X ) e. CC ) |
37 |
36
|
div1d |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( N BernPoly X ) / 1 ) = ( N BernPoly X ) ) |
38 |
35 37
|
eqtrd |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) = ( N BernPoly X ) ) |
39 |
28 38
|
oveq12d |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) = ( 1 x. ( N BernPoly X ) ) ) |
40 |
36
|
mulid2d |
|- ( ( N e. NN0 /\ X e. CC ) -> ( 1 x. ( N BernPoly X ) ) = ( N BernPoly X ) ) |
41 |
39 40
|
eqtrd |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) = ( N BernPoly X ) ) |
42 |
41
|
oveq2d |
|- ( ( N e. NN0 /\ X e. CC ) -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( N BernPoly X ) ) ) |
43 |
|
bpolyval |
|- ( ( N e. NN0 /\ X e. CC ) -> ( N BernPoly X ) = ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |
44 |
43
|
eqcomd |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( N BernPoly X ) ) |
45 |
|
expcl |
|- ( ( X e. CC /\ N e. NN0 ) -> ( X ^ N ) e. CC ) |
46 |
45
|
ancoms |
|- ( ( N e. NN0 /\ X e. CC ) -> ( X ^ N ) e. CC ) |
47 |
|
fzfid |
|- ( ( N e. NN0 /\ X e. CC ) -> ( 0 ... ( N - 1 ) ) e. Fin ) |
48 |
|
fzssp1 |
|- ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) |
49 |
|
ax-1cn |
|- 1 e. CC |
50 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
51 |
30 49 50
|
sylancl |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
52 |
51
|
oveq2d |
|- ( ( N e. NN0 /\ X e. CC ) -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) |
53 |
48 52
|
sseqtrid |
|- ( ( N e. NN0 /\ X e. CC ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
54 |
53
|
sselda |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. ( 0 ... N ) ) |
55 |
54 19
|
syldan |
|- ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
56 |
47 55
|
fsumcl |
|- ( ( N e. NN0 /\ X e. CC ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) |
57 |
46 56 36
|
subaddd |
|- ( ( N e. NN0 /\ X e. CC ) -> ( ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( N BernPoly X ) <-> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( N BernPoly X ) ) = ( X ^ N ) ) ) |
58 |
44 57
|
mpbid |
|- ( ( N e. NN0 /\ X e. CC ) -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( N BernPoly X ) ) = ( X ^ N ) ) |
59 |
26 42 58
|
3eqtrd |
|- ( ( N e. NN0 /\ X e. CC ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( X ^ N ) ) |