| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( N e. NN0 /\ X e. CC ) -> N e. NN0 ) | 
						
							| 2 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 3 | 1 2 | eleqtrdi |  |-  ( ( N e. NN0 /\ X e. CC ) -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 4 |  | elfzelz |  |-  ( k e. ( 0 ... N ) -> k e. ZZ ) | 
						
							| 5 |  | bccl |  |-  ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) | 
						
							| 6 | 1 4 5 | syl2an |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. NN0 ) | 
						
							| 7 | 6 | nn0cnd |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) | 
						
							| 8 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 9 |  | simpr |  |-  ( ( N e. NN0 /\ X e. CC ) -> X e. CC ) | 
						
							| 10 |  | bpolycl |  |-  ( ( k e. NN0 /\ X e. CC ) -> ( k BernPoly X ) e. CC ) | 
						
							| 11 | 8 9 10 | syl2anr |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( k BernPoly X ) e. CC ) | 
						
							| 12 |  | fznn0sub |  |-  ( k e. ( 0 ... N ) -> ( N - k ) e. NN0 ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( N - k ) e. NN0 ) | 
						
							| 14 |  | nn0p1nn |  |-  ( ( N - k ) e. NN0 -> ( ( N - k ) + 1 ) e. NN ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) + 1 ) e. NN ) | 
						
							| 16 | 15 | nncnd |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) + 1 ) e. CC ) | 
						
							| 17 | 15 | nnne0d |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( N - k ) + 1 ) =/= 0 ) | 
						
							| 18 | 11 16 17 | divcld |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) e. CC ) | 
						
							| 19 | 7 18 | mulcld |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 20 |  | oveq2 |  |-  ( k = N -> ( N _C k ) = ( N _C N ) ) | 
						
							| 21 |  | oveq1 |  |-  ( k = N -> ( k BernPoly X ) = ( N BernPoly X ) ) | 
						
							| 22 |  | oveq2 |  |-  ( k = N -> ( N - k ) = ( N - N ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( k = N -> ( ( N - k ) + 1 ) = ( ( N - N ) + 1 ) ) | 
						
							| 24 | 21 23 | oveq12d |  |-  ( k = N -> ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) = ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) | 
						
							| 25 | 20 24 | oveq12d |  |-  ( k = N -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) ) | 
						
							| 26 | 3 19 25 | fsumm1 |  |-  ( ( N e. NN0 /\ X e. CC ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) ) ) | 
						
							| 27 |  | bcnn |  |-  ( N e. NN0 -> ( N _C N ) = 1 ) | 
						
							| 28 | 27 | adantr |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( N _C N ) = 1 ) | 
						
							| 29 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 30 | 29 | adantr |  |-  ( ( N e. NN0 /\ X e. CC ) -> N e. CC ) | 
						
							| 31 | 30 | subidd |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( N - N ) = 0 ) | 
						
							| 32 | 31 | oveq1d |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( N - N ) + 1 ) = ( 0 + 1 ) ) | 
						
							| 33 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 34 | 32 33 | eqtrdi |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( N - N ) + 1 ) = 1 ) | 
						
							| 35 | 34 | oveq2d |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) = ( ( N BernPoly X ) / 1 ) ) | 
						
							| 36 |  | bpolycl |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( N BernPoly X ) e. CC ) | 
						
							| 37 | 36 | div1d |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( N BernPoly X ) / 1 ) = ( N BernPoly X ) ) | 
						
							| 38 | 35 37 | eqtrd |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) = ( N BernPoly X ) ) | 
						
							| 39 | 28 38 | oveq12d |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) = ( 1 x. ( N BernPoly X ) ) ) | 
						
							| 40 | 36 | mullidd |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( 1 x. ( N BernPoly X ) ) = ( N BernPoly X ) ) | 
						
							| 41 | 39 40 | eqtrd |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) = ( N BernPoly X ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( ( N _C N ) x. ( ( N BernPoly X ) / ( ( N - N ) + 1 ) ) ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( N BernPoly X ) ) ) | 
						
							| 43 |  | bpolyval |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( N BernPoly X ) = ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) | 
						
							| 44 | 43 | eqcomd |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( N BernPoly X ) ) | 
						
							| 45 |  | expcl |  |-  ( ( X e. CC /\ N e. NN0 ) -> ( X ^ N ) e. CC ) | 
						
							| 46 | 45 | ancoms |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( X ^ N ) e. CC ) | 
						
							| 47 |  | fzfid |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( 0 ... ( N - 1 ) ) e. Fin ) | 
						
							| 48 |  | fzssp1 |  |-  ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) | 
						
							| 49 |  | ax-1cn |  |-  1 e. CC | 
						
							| 50 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 51 | 30 49 50 | sylancl |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 52 | 51 | oveq2d |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) | 
						
							| 53 | 48 52 | sseqtrid |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 54 | 53 | sselda |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. ( 0 ... N ) ) | 
						
							| 55 | 54 19 | syldan |  |-  ( ( ( N e. NN0 /\ X e. CC ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 56 | 47 55 | fsumcl |  |-  ( ( N e. NN0 /\ X e. CC ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) e. CC ) | 
						
							| 57 | 46 56 36 | subaddd |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) = ( N BernPoly X ) <-> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( N BernPoly X ) ) = ( X ^ N ) ) ) | 
						
							| 58 | 44 57 | mpbid |  |-  ( ( N e. NN0 /\ X e. CC ) -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) + ( N BernPoly X ) ) = ( X ^ N ) ) | 
						
							| 59 | 26 42 58 | 3eqtrd |  |-  ( ( N e. NN0 /\ X e. CC ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) = ( X ^ N ) ) |