Step |
Hyp |
Ref |
Expression |
1 |
|
elnnuz |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
2 |
|
ax-1 |
|- ( E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
3 |
|
6nn0 |
|- 6 e. NN0 |
4 |
|
4nn0 |
|- 4 e. NN0 |
5 |
3 4
|
deccl |
|- ; 6 4 e. NN0 |
6 |
5
|
nn0rei |
|- ; 6 4 e. RR |
7 |
6
|
a1i |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 6 4 e. RR ) |
8 |
|
8nn0 |
|- 8 e. NN0 |
9 |
|
3nn0 |
|- 3 e. NN0 |
10 |
8 9
|
deccl |
|- ; 8 3 e. NN0 |
11 |
10
|
nn0rei |
|- ; 8 3 e. RR |
12 |
11
|
a1i |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 8 3 e. RR ) |
13 |
|
eluzelre |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> N e. RR ) |
14 |
|
4lt10 |
|- 4 < ; 1 0 |
15 |
|
6lt8 |
|- 6 < 8 |
16 |
3 8 4 9 14 15
|
decltc |
|- ; 6 4 < ; 8 3 |
17 |
16
|
a1i |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 6 4 < ; 8 3 ) |
18 |
|
eluzle |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 8 3 <_ N ) |
19 |
7 12 13 17 18
|
ltletrd |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ; 6 4 < N ) |
20 |
|
ltnle |
|- ( ( ; 6 4 e. RR /\ N e. RR ) -> ( ; 6 4 < N <-> -. N <_ ; 6 4 ) ) |
21 |
6 13 20
|
sylancr |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ( ; 6 4 < N <-> -. N <_ ; 6 4 ) ) |
22 |
19 21
|
mpbid |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> -. N <_ ; 6 4 ) |
23 |
22
|
pm2.21d |
|- ( N e. ( ZZ>= ` ; 8 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
24 |
|
83prm |
|- ; 8 3 e. Prime |
25 |
4 9
|
deccl |
|- ; 4 3 e. NN0 |
26 |
|
2nn0 |
|- 2 e. NN0 |
27 |
|
eqid |
|- ; 4 3 = ; 4 3 |
28 |
|
4t2e8 |
|- ( 4 x. 2 ) = 8 |
29 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
30 |
26 4 9 27 28 29
|
decmul1 |
|- ( ; 4 3 x. 2 ) = ; 8 6 |
31 |
|
3lt10 |
|- 3 < ; 1 0 |
32 |
|
4lt8 |
|- 4 < 8 |
33 |
4 8 9 9 31 32
|
decltc |
|- ; 4 3 < ; 8 3 |
34 |
|
6nn |
|- 6 e. NN |
35 |
|
3lt6 |
|- 3 < 6 |
36 |
8 9 34 35
|
declt |
|- ; 8 3 < ; 8 6 |
37 |
36
|
orci |
|- ( ; 8 3 < ; 8 6 \/ ; 8 3 = ; 8 6 ) |
38 |
2 23 24 25 30 33 37
|
bpos1lem |
|- ( N e. ( ZZ>= ` ; 4 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
39 |
|
43prm |
|- ; 4 3 e. Prime |
40 |
26 9
|
deccl |
|- ; 2 3 e. NN0 |
41 |
|
eqid |
|- ; 2 3 = ; 2 3 |
42 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
43 |
26 26 9 41 42 29
|
decmul1 |
|- ( ; 2 3 x. 2 ) = ; 4 6 |
44 |
|
2lt4 |
|- 2 < 4 |
45 |
26 4 9 9 31 44
|
decltc |
|- ; 2 3 < ; 4 3 |
46 |
4 9 34 35
|
declt |
|- ; 4 3 < ; 4 6 |
47 |
46
|
orci |
|- ( ; 4 3 < ; 4 6 \/ ; 4 3 = ; 4 6 ) |
48 |
2 38 39 40 43 45 47
|
bpos1lem |
|- ( N e. ( ZZ>= ` ; 2 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
49 |
|
23prm |
|- ; 2 3 e. Prime |
50 |
|
1nn0 |
|- 1 e. NN0 |
51 |
50 9
|
deccl |
|- ; 1 3 e. NN0 |
52 |
|
eqid |
|- ; 1 3 = ; 1 3 |
53 |
|
2cn |
|- 2 e. CC |
54 |
53
|
mulid2i |
|- ( 1 x. 2 ) = 2 |
55 |
26 50 9 52 54 29
|
decmul1 |
|- ( ; 1 3 x. 2 ) = ; 2 6 |
56 |
|
1lt2 |
|- 1 < 2 |
57 |
50 26 9 9 31 56
|
decltc |
|- ; 1 3 < ; 2 3 |
58 |
26 9 34 35
|
declt |
|- ; 2 3 < ; 2 6 |
59 |
58
|
orci |
|- ( ; 2 3 < ; 2 6 \/ ; 2 3 = ; 2 6 ) |
60 |
2 48 49 51 55 57 59
|
bpos1lem |
|- ( N e. ( ZZ>= ` ; 1 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
61 |
|
13prm |
|- ; 1 3 e. Prime |
62 |
|
7nn0 |
|- 7 e. NN0 |
63 |
|
7t2e14 |
|- ( 7 x. 2 ) = ; 1 4 |
64 |
|
1nn |
|- 1 e. NN |
65 |
|
7lt10 |
|- 7 < ; 1 0 |
66 |
64 9 62 65
|
declti |
|- 7 < ; 1 3 |
67 |
|
4nn |
|- 4 e. NN |
68 |
|
3lt4 |
|- 3 < 4 |
69 |
50 9 67 68
|
declt |
|- ; 1 3 < ; 1 4 |
70 |
69
|
orci |
|- ( ; 1 3 < ; 1 4 \/ ; 1 3 = ; 1 4 ) |
71 |
2 60 61 62 63 66 70
|
bpos1lem |
|- ( N e. ( ZZ>= ` 7 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
72 |
|
7prm |
|- 7 e. Prime |
73 |
|
5nn0 |
|- 5 e. NN0 |
74 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
75 |
|
5lt7 |
|- 5 < 7 |
76 |
65
|
orci |
|- ( 7 < ; 1 0 \/ 7 = ; 1 0 ) |
77 |
2 71 72 73 74 75 76
|
bpos1lem |
|- ( N e. ( ZZ>= ` 5 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
78 |
|
5prm |
|- 5 e. Prime |
79 |
|
3lt5 |
|- 3 < 5 |
80 |
|
5lt6 |
|- 5 < 6 |
81 |
80
|
orci |
|- ( 5 < 6 \/ 5 = 6 ) |
82 |
2 77 78 9 29 79 81
|
bpos1lem |
|- ( N e. ( ZZ>= ` 3 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
83 |
|
3prm |
|- 3 e. Prime |
84 |
|
2lt3 |
|- 2 < 3 |
85 |
68
|
orci |
|- ( 3 < 4 \/ 3 = 4 ) |
86 |
2 82 83 26 42 84 85
|
bpos1lem |
|- ( N e. ( ZZ>= ` 2 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
87 |
|
2prm |
|- 2 e. Prime |
88 |
|
eqid |
|- 2 = 2 |
89 |
88
|
olci |
|- ( 2 < 2 \/ 2 = 2 ) |
90 |
2 86 87 50 54 56 89
|
bpos1lem |
|- ( N e. ( ZZ>= ` 1 ) -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
91 |
1 90
|
sylbi |
|- ( N e. NN -> ( N <_ ; 6 4 -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) ) |
92 |
91
|
imp |
|- ( ( N e. NN /\ N <_ ; 6 4 ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |