| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bpos1.1 | 
							 |-  ( E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) -> ph )  | 
						
						
							| 2 | 
							
								
							 | 
							bpos1.2 | 
							 |-  ( N e. ( ZZ>= ` P ) -> ph )  | 
						
						
							| 3 | 
							
								
							 | 
							bpos1.3 | 
							 |-  P e. Prime  | 
						
						
							| 4 | 
							
								
							 | 
							bpos1.4 | 
							 |-  A e. NN0  | 
						
						
							| 5 | 
							
								
							 | 
							bpos1.5 | 
							 |-  ( A x. 2 ) = B  | 
						
						
							| 6 | 
							
								
							 | 
							bpos1.6 | 
							 |-  A < P  | 
						
						
							| 7 | 
							
								
							 | 
							bpos1.7 | 
							 |-  ( P < B \/ P = B )  | 
						
						
							| 8 | 
							
								
							 | 
							prmnn | 
							 |-  ( P e. Prime -> P e. NN )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							ax-mp | 
							 |-  P e. NN  | 
						
						
							| 10 | 
							
								9
							 | 
							nnzi | 
							 |-  P e. ZZ  | 
						
						
							| 11 | 
							
								
							 | 
							eluzelz | 
							 |-  ( N e. ( ZZ>= ` A ) -> N e. ZZ )  | 
						
						
							| 12 | 
							
								
							 | 
							eluz | 
							 |-  ( ( P e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` P ) <-> P <_ N ) )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							sylancr | 
							 |-  ( N e. ( ZZ>= ` A ) -> ( N e. ( ZZ>= ` P ) <-> P <_ N ) )  | 
						
						
							| 14 | 
							
								13 2
							 | 
							biimtrrdi | 
							 |-  ( N e. ( ZZ>= ` A ) -> ( P <_ N -> ph ) )  | 
						
						
							| 15 | 
							
								9
							 | 
							nnrei | 
							 |-  P e. RR  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							 |-  ( N e. ( ZZ>= ` A ) -> P e. RR )  | 
						
						
							| 17 | 
							
								4
							 | 
							nn0rei | 
							 |-  A e. RR  | 
						
						
							| 18 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 19 | 
							
								17 18
							 | 
							remulcli | 
							 |-  ( A x. 2 ) e. RR  | 
						
						
							| 20 | 
							
								5 19
							 | 
							eqeltrri | 
							 |-  B e. RR  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							 |-  ( N e. ( ZZ>= ` A ) -> B e. RR )  | 
						
						
							| 22 | 
							
								
							 | 
							eluzelre | 
							 |-  ( N e. ( ZZ>= ` A ) -> N e. RR )  | 
						
						
							| 23 | 
							
								
							 | 
							remulcl | 
							 |-  ( ( 2 e. RR /\ N e. RR ) -> ( 2 x. N ) e. RR )  | 
						
						
							| 24 | 
							
								18 22 23
							 | 
							sylancr | 
							 |-  ( N e. ( ZZ>= ` A ) -> ( 2 x. N ) e. RR )  | 
						
						
							| 25 | 
							
								15 20
							 | 
							leloei | 
							 |-  ( P <_ B <-> ( P < B \/ P = B ) )  | 
						
						
							| 26 | 
							
								7 25
							 | 
							mpbir | 
							 |-  P <_ B  | 
						
						
							| 27 | 
							
								26
							 | 
							a1i | 
							 |-  ( N e. ( ZZ>= ` A ) -> P <_ B )  | 
						
						
							| 28 | 
							
								4
							 | 
							nn0cni | 
							 |-  A e. CC  | 
						
						
							| 29 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 30 | 
							
								28 29 5
							 | 
							mulcomli | 
							 |-  ( 2 x. A ) = B  | 
						
						
							| 31 | 
							
								
							 | 
							eluzle | 
							 |-  ( N e. ( ZZ>= ` A ) -> A <_ N )  | 
						
						
							| 32 | 
							
								
							 | 
							2pos | 
							 |-  0 < 2  | 
						
						
							| 33 | 
							
								18 32
							 | 
							pm3.2i | 
							 |-  ( 2 e. RR /\ 0 < 2 )  | 
						
						
							| 34 | 
							
								
							 | 
							lemul2 | 
							 |-  ( ( A e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( A <_ N <-> ( 2 x. A ) <_ ( 2 x. N ) ) )  | 
						
						
							| 35 | 
							
								17 33 34
							 | 
							mp3an13 | 
							 |-  ( N e. RR -> ( A <_ N <-> ( 2 x. A ) <_ ( 2 x. N ) ) )  | 
						
						
							| 36 | 
							
								22 35
							 | 
							syl | 
							 |-  ( N e. ( ZZ>= ` A ) -> ( A <_ N <-> ( 2 x. A ) <_ ( 2 x. N ) ) )  | 
						
						
							| 37 | 
							
								31 36
							 | 
							mpbid | 
							 |-  ( N e. ( ZZ>= ` A ) -> ( 2 x. A ) <_ ( 2 x. N ) )  | 
						
						
							| 38 | 
							
								30 37
							 | 
							eqbrtrrid | 
							 |-  ( N e. ( ZZ>= ` A ) -> B <_ ( 2 x. N ) )  | 
						
						
							| 39 | 
							
								16 21 24 27 38
							 | 
							letrd | 
							 |-  ( N e. ( ZZ>= ` A ) -> P <_ ( 2 x. N ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							anim2i | 
							 |-  ( ( N < P /\ N e. ( ZZ>= ` A ) ) -> ( N < P /\ P <_ ( 2 x. N ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							breq2 | 
							 |-  ( p = P -> ( N < p <-> N < P ) )  | 
						
						
							| 42 | 
							
								
							 | 
							breq1 | 
							 |-  ( p = P -> ( p <_ ( 2 x. N ) <-> P <_ ( 2 x. N ) ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							anbi12d | 
							 |-  ( p = P -> ( ( N < p /\ p <_ ( 2 x. N ) ) <-> ( N < P /\ P <_ ( 2 x. N ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							rspcev | 
							 |-  ( ( P e. Prime /\ ( N < P /\ P <_ ( 2 x. N ) ) ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) )  | 
						
						
							| 45 | 
							
								3 40 44
							 | 
							sylancr | 
							 |-  ( ( N < P /\ N e. ( ZZ>= ` A ) ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) )  | 
						
						
							| 46 | 
							
								45 1
							 | 
							syl | 
							 |-  ( ( N < P /\ N e. ( ZZ>= ` A ) ) -> ph )  | 
						
						
							| 47 | 
							
								46
							 | 
							expcom | 
							 |-  ( N e. ( ZZ>= ` A ) -> ( N < P -> ph ) )  | 
						
						
							| 48 | 
							
								
							 | 
							lelttric | 
							 |-  ( ( P e. RR /\ N e. RR ) -> ( P <_ N \/ N < P ) )  | 
						
						
							| 49 | 
							
								15 22 48
							 | 
							sylancr | 
							 |-  ( N e. ( ZZ>= ` A ) -> ( P <_ N \/ N < P ) )  | 
						
						
							| 50 | 
							
								14 47 49
							 | 
							mpjaod | 
							 |-  ( N e. ( ZZ>= ` A ) -> ph )  |