| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bposlem2.1 | 
							 |-  ( ph -> N e. NN )  | 
						
						
							| 2 | 
							
								
							 | 
							bposlem2.2 | 
							 |-  ( ph -> P e. Prime )  | 
						
						
							| 3 | 
							
								
							 | 
							bposlem2.3 | 
							 |-  ( ph -> 2 < P )  | 
						
						
							| 4 | 
							
								
							 | 
							bposlem2.4 | 
							 |-  ( ph -> ( ( 2 x. N ) / 3 ) < P )  | 
						
						
							| 5 | 
							
								
							 | 
							bposlem2.5 | 
							 |-  ( ph -> P <_ N )  | 
						
						
							| 6 | 
							
								
							 | 
							pcbcctr | 
							 |-  ( ( N e. NN /\ P e. Prime ) -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) )  | 
						
						
							| 7 | 
							
								1 2 6
							 | 
							syl2anc | 
							 |-  ( ph -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							elfznn | 
							 |-  ( k e. ( 1 ... ( 2 x. N ) ) -> k e. NN )  | 
						
						
							| 9 | 
							
								
							 | 
							elnn1uz2 | 
							 |-  ( k e. NN <-> ( k = 1 \/ k e. ( ZZ>= ` 2 ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylib | 
							 |-  ( k e. ( 1 ... ( 2 x. N ) ) -> ( k = 1 \/ k e. ( ZZ>= ` 2 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq2 | 
							 |-  ( k = 1 -> ( P ^ k ) = ( P ^ 1 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							prmnn | 
							 |-  ( P e. Prime -> P e. NN )  | 
						
						
							| 13 | 
							
								2 12
							 | 
							syl | 
							 |-  ( ph -> P e. NN )  | 
						
						
							| 14 | 
							
								13
							 | 
							nncnd | 
							 |-  ( ph -> P e. CC )  | 
						
						
							| 15 | 
							
								14
							 | 
							exp1d | 
							 |-  ( ph -> ( P ^ 1 ) = P )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							sylan9eqr | 
							 |-  ( ( ph /\ k = 1 ) -> ( P ^ k ) = P )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq2d | 
							 |-  ( ( ph /\ k = 1 ) -> ( ( 2 x. N ) / ( P ^ k ) ) = ( ( 2 x. N ) / P ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							fveq2d | 
							 |-  ( ( ph /\ k = 1 ) -> ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = ( |_ ` ( ( 2 x. N ) / P ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							2t1e2 | 
							 |-  ( 2 x. 1 ) = 2  | 
						
						
							| 20 | 
							
								14
							 | 
							mullidd | 
							 |-  ( ph -> ( 1 x. P ) = P )  | 
						
						
							| 21 | 
							
								20 5
							 | 
							eqbrtrd | 
							 |-  ( ph -> ( 1 x. P ) <_ N )  | 
						
						
							| 22 | 
							
								
							 | 
							1red | 
							 |-  ( ph -> 1 e. RR )  | 
						
						
							| 23 | 
							
								1
							 | 
							nnred | 
							 |-  ( ph -> N e. RR )  | 
						
						
							| 24 | 
							
								13
							 | 
							nnred | 
							 |-  ( ph -> P e. RR )  | 
						
						
							| 25 | 
							
								13
							 | 
							nngt0d | 
							 |-  ( ph -> 0 < P )  | 
						
						
							| 26 | 
							
								
							 | 
							lemuldiv | 
							 |-  ( ( 1 e. RR /\ N e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( 1 x. P ) <_ N <-> 1 <_ ( N / P ) ) )  | 
						
						
							| 27 | 
							
								22 23 24 25 26
							 | 
							syl112anc | 
							 |-  ( ph -> ( ( 1 x. P ) <_ N <-> 1 <_ ( N / P ) ) )  | 
						
						
							| 28 | 
							
								21 27
							 | 
							mpbid | 
							 |-  ( ph -> 1 <_ ( N / P ) )  | 
						
						
							| 29 | 
							
								23 13
							 | 
							nndivred | 
							 |-  ( ph -> ( N / P ) e. RR )  | 
						
						
							| 30 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 31 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 32 | 
							
								
							 | 
							2pos | 
							 |-  0 < 2  | 
						
						
							| 33 | 
							
								31 32
							 | 
							pm3.2i | 
							 |-  ( 2 e. RR /\ 0 < 2 )  | 
						
						
							| 34 | 
							
								
							 | 
							lemul2 | 
							 |-  ( ( 1 e. RR /\ ( N / P ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 1 <_ ( N / P ) <-> ( 2 x. 1 ) <_ ( 2 x. ( N / P ) ) ) )  | 
						
						
							| 35 | 
							
								30 33 34
							 | 
							mp3an13 | 
							 |-  ( ( N / P ) e. RR -> ( 1 <_ ( N / P ) <-> ( 2 x. 1 ) <_ ( 2 x. ( N / P ) ) ) )  | 
						
						
							| 36 | 
							
								29 35
							 | 
							syl | 
							 |-  ( ph -> ( 1 <_ ( N / P ) <-> ( 2 x. 1 ) <_ ( 2 x. ( N / P ) ) ) )  | 
						
						
							| 37 | 
							
								28 36
							 | 
							mpbid | 
							 |-  ( ph -> ( 2 x. 1 ) <_ ( 2 x. ( N / P ) ) )  | 
						
						
							| 38 | 
							
								19 37
							 | 
							eqbrtrrid | 
							 |-  ( ph -> 2 <_ ( 2 x. ( N / P ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							2cnd | 
							 |-  ( ph -> 2 e. CC )  | 
						
						
							| 40 | 
							
								1
							 | 
							nncnd | 
							 |-  ( ph -> N e. CC )  | 
						
						
							| 41 | 
							
								13
							 | 
							nnne0d | 
							 |-  ( ph -> P =/= 0 )  | 
						
						
							| 42 | 
							
								39 40 14 41
							 | 
							divassd | 
							 |-  ( ph -> ( ( 2 x. N ) / P ) = ( 2 x. ( N / P ) ) )  | 
						
						
							| 43 | 
							
								38 42
							 | 
							breqtrrd | 
							 |-  ( ph -> 2 <_ ( ( 2 x. N ) / P ) )  | 
						
						
							| 44 | 
							
								
							 | 
							2nn | 
							 |-  2 e. NN  | 
						
						
							| 45 | 
							
								
							 | 
							nnmulcl | 
							 |-  ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN )  | 
						
						
							| 46 | 
							
								44 1 45
							 | 
							sylancr | 
							 |-  ( ph -> ( 2 x. N ) e. NN )  | 
						
						
							| 47 | 
							
								46
							 | 
							nnred | 
							 |-  ( ph -> ( 2 x. N ) e. RR )  | 
						
						
							| 48 | 
							
								
							 | 
							3re | 
							 |-  3 e. RR  | 
						
						
							| 49 | 
							
								
							 | 
							3pos | 
							 |-  0 < 3  | 
						
						
							| 50 | 
							
								48 49
							 | 
							pm3.2i | 
							 |-  ( 3 e. RR /\ 0 < 3 )  | 
						
						
							| 51 | 
							
								
							 | 
							ltdiv23 | 
							 |-  ( ( ( 2 x. N ) e. RR /\ ( 3 e. RR /\ 0 < 3 ) /\ ( P e. RR /\ 0 < P ) ) -> ( ( ( 2 x. N ) / 3 ) < P <-> ( ( 2 x. N ) / P ) < 3 ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							mp3an2 | 
							 |-  ( ( ( 2 x. N ) e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( ( 2 x. N ) / 3 ) < P <-> ( ( 2 x. N ) / P ) < 3 ) )  | 
						
						
							| 53 | 
							
								47 24 25 52
							 | 
							syl12anc | 
							 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) < P <-> ( ( 2 x. N ) / P ) < 3 ) )  | 
						
						
							| 54 | 
							
								4 53
							 | 
							mpbid | 
							 |-  ( ph -> ( ( 2 x. N ) / P ) < 3 )  | 
						
						
							| 55 | 
							
								
							 | 
							df-3 | 
							 |-  3 = ( 2 + 1 )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							breqtrdi | 
							 |-  ( ph -> ( ( 2 x. N ) / P ) < ( 2 + 1 ) )  | 
						
						
							| 57 | 
							
								47 13
							 | 
							nndivred | 
							 |-  ( ph -> ( ( 2 x. N ) / P ) e. RR )  | 
						
						
							| 58 | 
							
								
							 | 
							2z | 
							 |-  2 e. ZZ  | 
						
						
							| 59 | 
							
								
							 | 
							flbi | 
							 |-  ( ( ( ( 2 x. N ) / P ) e. RR /\ 2 e. ZZ ) -> ( ( |_ ` ( ( 2 x. N ) / P ) ) = 2 <-> ( 2 <_ ( ( 2 x. N ) / P ) /\ ( ( 2 x. N ) / P ) < ( 2 + 1 ) ) ) )  | 
						
						
							| 60 | 
							
								57 58 59
							 | 
							sylancl | 
							 |-  ( ph -> ( ( |_ ` ( ( 2 x. N ) / P ) ) = 2 <-> ( 2 <_ ( ( 2 x. N ) / P ) /\ ( ( 2 x. N ) / P ) < ( 2 + 1 ) ) ) )  | 
						
						
							| 61 | 
							
								43 56 60
							 | 
							mpbir2and | 
							 |-  ( ph -> ( |_ ` ( ( 2 x. N ) / P ) ) = 2 )  | 
						
						
							| 62 | 
							
								61
							 | 
							adantr | 
							 |-  ( ( ph /\ k = 1 ) -> ( |_ ` ( ( 2 x. N ) / P ) ) = 2 )  | 
						
						
							| 63 | 
							
								18 62
							 | 
							eqtrd | 
							 |-  ( ( ph /\ k = 1 ) -> ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = 2 )  | 
						
						
							| 64 | 
							
								16
							 | 
							oveq2d | 
							 |-  ( ( ph /\ k = 1 ) -> ( N / ( P ^ k ) ) = ( N / P ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							fveq2d | 
							 |-  ( ( ph /\ k = 1 ) -> ( |_ ` ( N / ( P ^ k ) ) ) = ( |_ ` ( N / P ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							remulcl | 
							 |-  ( ( 2 e. RR /\ ( N / P ) e. RR ) -> ( 2 x. ( N / P ) ) e. RR )  | 
						
						
							| 67 | 
							
								31 29 66
							 | 
							sylancr | 
							 |-  ( ph -> ( 2 x. ( N / P ) ) e. RR )  | 
						
						
							| 68 | 
							
								48
							 | 
							a1i | 
							 |-  ( ph -> 3 e. RR )  | 
						
						
							| 69 | 
							
								
							 | 
							4re | 
							 |-  4 e. RR  | 
						
						
							| 70 | 
							
								69
							 | 
							a1i | 
							 |-  ( ph -> 4 e. RR )  | 
						
						
							| 71 | 
							
								42 54
							 | 
							eqbrtrrd | 
							 |-  ( ph -> ( 2 x. ( N / P ) ) < 3 )  | 
						
						
							| 72 | 
							
								
							 | 
							3lt4 | 
							 |-  3 < 4  | 
						
						
							| 73 | 
							
								72
							 | 
							a1i | 
							 |-  ( ph -> 3 < 4 )  | 
						
						
							| 74 | 
							
								67 68 70 71 73
							 | 
							lttrd | 
							 |-  ( ph -> ( 2 x. ( N / P ) ) < 4 )  | 
						
						
							| 75 | 
							
								
							 | 
							2t2e4 | 
							 |-  ( 2 x. 2 ) = 4  | 
						
						
							| 76 | 
							
								74 75
							 | 
							breqtrrdi | 
							 |-  ( ph -> ( 2 x. ( N / P ) ) < ( 2 x. 2 ) )  | 
						
						
							| 77 | 
							
								
							 | 
							ltmul2 | 
							 |-  ( ( ( N / P ) e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( N / P ) < 2 <-> ( 2 x. ( N / P ) ) < ( 2 x. 2 ) ) )  | 
						
						
							| 78 | 
							
								31 33 77
							 | 
							mp3an23 | 
							 |-  ( ( N / P ) e. RR -> ( ( N / P ) < 2 <-> ( 2 x. ( N / P ) ) < ( 2 x. 2 ) ) )  | 
						
						
							| 79 | 
							
								29 78
							 | 
							syl | 
							 |-  ( ph -> ( ( N / P ) < 2 <-> ( 2 x. ( N / P ) ) < ( 2 x. 2 ) ) )  | 
						
						
							| 80 | 
							
								76 79
							 | 
							mpbird | 
							 |-  ( ph -> ( N / P ) < 2 )  | 
						
						
							| 81 | 
							
								
							 | 
							df-2 | 
							 |-  2 = ( 1 + 1 )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							breqtrdi | 
							 |-  ( ph -> ( N / P ) < ( 1 + 1 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							1z | 
							 |-  1 e. ZZ  | 
						
						
							| 84 | 
							
								
							 | 
							flbi | 
							 |-  ( ( ( N / P ) e. RR /\ 1 e. ZZ ) -> ( ( |_ ` ( N / P ) ) = 1 <-> ( 1 <_ ( N / P ) /\ ( N / P ) < ( 1 + 1 ) ) ) )  | 
						
						
							| 85 | 
							
								29 83 84
							 | 
							sylancl | 
							 |-  ( ph -> ( ( |_ ` ( N / P ) ) = 1 <-> ( 1 <_ ( N / P ) /\ ( N / P ) < ( 1 + 1 ) ) ) )  | 
						
						
							| 86 | 
							
								28 82 85
							 | 
							mpbir2and | 
							 |-  ( ph -> ( |_ ` ( N / P ) ) = 1 )  | 
						
						
							| 87 | 
							
								86
							 | 
							adantr | 
							 |-  ( ( ph /\ k = 1 ) -> ( |_ ` ( N / P ) ) = 1 )  | 
						
						
							| 88 | 
							
								65 87
							 | 
							eqtrd | 
							 |-  ( ( ph /\ k = 1 ) -> ( |_ ` ( N / ( P ^ k ) ) ) = 1 )  | 
						
						
							| 89 | 
							
								88
							 | 
							oveq2d | 
							 |-  ( ( ph /\ k = 1 ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = ( 2 x. 1 ) )  | 
						
						
							| 90 | 
							
								89 19
							 | 
							eqtrdi | 
							 |-  ( ( ph /\ k = 1 ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = 2 )  | 
						
						
							| 91 | 
							
								63 90
							 | 
							oveq12d | 
							 |-  ( ( ph /\ k = 1 ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = ( 2 - 2 ) )  | 
						
						
							| 92 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 93 | 
							
								92
							 | 
							subidi | 
							 |-  ( 2 - 2 ) = 0  | 
						
						
							| 94 | 
							
								91 93
							 | 
							eqtrdi | 
							 |-  ( ( ph /\ k = 1 ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 )  | 
						
						
							| 95 | 
							
								46
							 | 
							nnrpd | 
							 |-  ( ph -> ( 2 x. N ) e. RR+ )  | 
						
						
							| 96 | 
							
								95
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) e. RR+ )  | 
						
						
							| 97 | 
							
								
							 | 
							eluzge2nn0 | 
							 |-  ( k e. ( ZZ>= ` 2 ) -> k e. NN0 )  | 
						
						
							| 98 | 
							
								
							 | 
							nnexpcl | 
							 |-  ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. NN )  | 
						
						
							| 99 | 
							
								13 97 98
							 | 
							syl2an | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ k ) e. NN )  | 
						
						
							| 100 | 
							
								99
							 | 
							nnrpd | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ k ) e. RR+ )  | 
						
						
							| 101 | 
							
								96 100
							 | 
							rpdivcld | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. N ) / ( P ^ k ) ) e. RR+ )  | 
						
						
							| 102 | 
							
								101
							 | 
							rpge0d | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> 0 <_ ( ( 2 x. N ) / ( P ^ k ) ) )  | 
						
						
							| 103 | 
							
								47
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) e. RR )  | 
						
						
							| 104 | 
							
								
							 | 
							remulcl | 
							 |-  ( ( 3 e. RR /\ P e. RR ) -> ( 3 x. P ) e. RR )  | 
						
						
							| 105 | 
							
								48 24 104
							 | 
							sylancr | 
							 |-  ( ph -> ( 3 x. P ) e. RR )  | 
						
						
							| 106 | 
							
								105
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 3 x. P ) e. RR )  | 
						
						
							| 107 | 
							
								99
							 | 
							nnred | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ k ) e. RR )  | 
						
						
							| 108 | 
							
								
							 | 
							ltdivmul | 
							 |-  ( ( ( 2 x. N ) e. RR /\ P e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( ( 2 x. N ) / 3 ) < P <-> ( 2 x. N ) < ( 3 x. P ) ) )  | 
						
						
							| 109 | 
							
								50 108
							 | 
							mp3an3 | 
							 |-  ( ( ( 2 x. N ) e. RR /\ P e. RR ) -> ( ( ( 2 x. N ) / 3 ) < P <-> ( 2 x. N ) < ( 3 x. P ) ) )  | 
						
						
							| 110 | 
							
								47 24 109
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) < P <-> ( 2 x. N ) < ( 3 x. P ) ) )  | 
						
						
							| 111 | 
							
								4 110
							 | 
							mpbid | 
							 |-  ( ph -> ( 2 x. N ) < ( 3 x. P ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) < ( 3 x. P ) )  | 
						
						
							| 113 | 
							
								24 24
							 | 
							remulcld | 
							 |-  ( ph -> ( P x. P ) e. RR )  | 
						
						
							| 114 | 
							
								113
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P x. P ) e. RR )  | 
						
						
							| 115 | 
							
								
							 | 
							nnltp1le | 
							 |-  ( ( 2 e. NN /\ P e. NN ) -> ( 2 < P <-> ( 2 + 1 ) <_ P ) )  | 
						
						
							| 116 | 
							
								44 13 115
							 | 
							sylancr | 
							 |-  ( ph -> ( 2 < P <-> ( 2 + 1 ) <_ P ) )  | 
						
						
							| 117 | 
							
								3 116
							 | 
							mpbid | 
							 |-  ( ph -> ( 2 + 1 ) <_ P )  | 
						
						
							| 118 | 
							
								55 117
							 | 
							eqbrtrid | 
							 |-  ( ph -> 3 <_ P )  | 
						
						
							| 119 | 
							
								
							 | 
							lemul1 | 
							 |-  ( ( 3 e. RR /\ P e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( 3 <_ P <-> ( 3 x. P ) <_ ( P x. P ) ) )  | 
						
						
							| 120 | 
							
								48 119
							 | 
							mp3an1 | 
							 |-  ( ( P e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( 3 <_ P <-> ( 3 x. P ) <_ ( P x. P ) ) )  | 
						
						
							| 121 | 
							
								24 24 25 120
							 | 
							syl12anc | 
							 |-  ( ph -> ( 3 <_ P <-> ( 3 x. P ) <_ ( P x. P ) ) )  | 
						
						
							| 122 | 
							
								118 121
							 | 
							mpbid | 
							 |-  ( ph -> ( 3 x. P ) <_ ( P x. P ) )  | 
						
						
							| 123 | 
							
								122
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 3 x. P ) <_ ( P x. P ) )  | 
						
						
							| 124 | 
							
								14
							 | 
							sqvald | 
							 |-  ( ph -> ( P ^ 2 ) = ( P x. P ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ 2 ) = ( P x. P ) )  | 
						
						
							| 126 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> P e. RR )  | 
						
						
							| 127 | 
							
								13
							 | 
							nnge1d | 
							 |-  ( ph -> 1 <_ P )  | 
						
						
							| 128 | 
							
								127
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> 1 <_ P )  | 
						
						
							| 129 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> k e. ( ZZ>= ` 2 ) )  | 
						
						
							| 130 | 
							
								126 128 129
							 | 
							leexp2ad | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ 2 ) <_ ( P ^ k ) )  | 
						
						
							| 131 | 
							
								125 130
							 | 
							eqbrtrrd | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P x. P ) <_ ( P ^ k ) )  | 
						
						
							| 132 | 
							
								106 114 107 123 131
							 | 
							letrd | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 3 x. P ) <_ ( P ^ k ) )  | 
						
						
							| 133 | 
							
								103 106 107 112 132
							 | 
							ltletrd | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) < ( P ^ k ) )  | 
						
						
							| 134 | 
							
								99
							 | 
							nncnd | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ k ) e. CC )  | 
						
						
							| 135 | 
							
								134
							 | 
							mulridd | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( P ^ k ) x. 1 ) = ( P ^ k ) )  | 
						
						
							| 136 | 
							
								133 135
							 | 
							breqtrrd | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) < ( ( P ^ k ) x. 1 ) )  | 
						
						
							| 137 | 
							
								
							 | 
							1red | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> 1 e. RR )  | 
						
						
							| 138 | 
							
								103 137 100
							 | 
							ltdivmuld | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( ( 2 x. N ) / ( P ^ k ) ) < 1 <-> ( 2 x. N ) < ( ( P ^ k ) x. 1 ) ) )  | 
						
						
							| 139 | 
							
								136 138
							 | 
							mpbird | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. N ) / ( P ^ k ) ) < 1 )  | 
						
						
							| 140 | 
							
								
							 | 
							1e0p1 | 
							 |-  1 = ( 0 + 1 )  | 
						
						
							| 141 | 
							
								139 140
							 | 
							breqtrdi | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. N ) / ( P ^ k ) ) < ( 0 + 1 ) )  | 
						
						
							| 142 | 
							
								101
							 | 
							rpred | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. N ) / ( P ^ k ) ) e. RR )  | 
						
						
							| 143 | 
							
								
							 | 
							0z | 
							 |-  0 e. ZZ  | 
						
						
							| 144 | 
							
								
							 | 
							flbi | 
							 |-  ( ( ( ( 2 x. N ) / ( P ^ k ) ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = 0 <-> ( 0 <_ ( ( 2 x. N ) / ( P ^ k ) ) /\ ( ( 2 x. N ) / ( P ^ k ) ) < ( 0 + 1 ) ) ) )  | 
						
						
							| 145 | 
							
								142 143 144
							 | 
							sylancl | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = 0 <-> ( 0 <_ ( ( 2 x. N ) / ( P ^ k ) ) /\ ( ( 2 x. N ) / ( P ^ k ) ) < ( 0 + 1 ) ) ) )  | 
						
						
							| 146 | 
							
								102 141 145
							 | 
							mpbir2and | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = 0 )  | 
						
						
							| 147 | 
							
								1
							 | 
							nnrpd | 
							 |-  ( ph -> N e. RR+ )  | 
						
						
							| 148 | 
							
								147
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N e. RR+ )  | 
						
						
							| 149 | 
							
								148 100
							 | 
							rpdivcld | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( N / ( P ^ k ) ) e. RR+ )  | 
						
						
							| 150 | 
							
								149
							 | 
							rpge0d | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> 0 <_ ( N / ( P ^ k ) ) )  | 
						
						
							| 151 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N e. RR )  | 
						
						
							| 152 | 
							
								23 147
							 | 
							ltaddrpd | 
							 |-  ( ph -> N < ( N + N ) )  | 
						
						
							| 153 | 
							
								40
							 | 
							2timesd | 
							 |-  ( ph -> ( 2 x. N ) = ( N + N ) )  | 
						
						
							| 154 | 
							
								152 153
							 | 
							breqtrrd | 
							 |-  ( ph -> N < ( 2 x. N ) )  | 
						
						
							| 155 | 
							
								154
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N < ( 2 x. N ) )  | 
						
						
							| 156 | 
							
								151 103 107 155 133
							 | 
							lttrd | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N < ( P ^ k ) )  | 
						
						
							| 157 | 
							
								156 135
							 | 
							breqtrrd | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N < ( ( P ^ k ) x. 1 ) )  | 
						
						
							| 158 | 
							
								151 137 100
							 | 
							ltdivmuld | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( N / ( P ^ k ) ) < 1 <-> N < ( ( P ^ k ) x. 1 ) ) )  | 
						
						
							| 159 | 
							
								157 158
							 | 
							mpbird | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( N / ( P ^ k ) ) < 1 )  | 
						
						
							| 160 | 
							
								159 140
							 | 
							breqtrdi | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( N / ( P ^ k ) ) < ( 0 + 1 ) )  | 
						
						
							| 161 | 
							
								149
							 | 
							rpred | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( N / ( P ^ k ) ) e. RR )  | 
						
						
							| 162 | 
							
								
							 | 
							flbi | 
							 |-  ( ( ( N / ( P ^ k ) ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( N / ( P ^ k ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ k ) ) /\ ( N / ( P ^ k ) ) < ( 0 + 1 ) ) ) )  | 
						
						
							| 163 | 
							
								161 143 162
							 | 
							sylancl | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( |_ ` ( N / ( P ^ k ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ k ) ) /\ ( N / ( P ^ k ) ) < ( 0 + 1 ) ) ) )  | 
						
						
							| 164 | 
							
								150 160 163
							 | 
							mpbir2and | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) = 0 )  | 
						
						
							| 165 | 
							
								164
							 | 
							oveq2d | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = ( 2 x. 0 ) )  | 
						
						
							| 166 | 
							
								
							 | 
							2t0e0 | 
							 |-  ( 2 x. 0 ) = 0  | 
						
						
							| 167 | 
							
								165 166
							 | 
							eqtrdi | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = 0 )  | 
						
						
							| 168 | 
							
								146 167
							 | 
							oveq12d | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = ( 0 - 0 ) )  | 
						
						
							| 169 | 
							
								
							 | 
							0m0e0 | 
							 |-  ( 0 - 0 ) = 0  | 
						
						
							| 170 | 
							
								168 169
							 | 
							eqtrdi | 
							 |-  ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 )  | 
						
						
							| 171 | 
							
								94 170
							 | 
							jaodan | 
							 |-  ( ( ph /\ ( k = 1 \/ k e. ( ZZ>= ` 2 ) ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 )  | 
						
						
							| 172 | 
							
								10 171
							 | 
							sylan2 | 
							 |-  ( ( ph /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 )  | 
						
						
							| 173 | 
							
								172
							 | 
							sumeq2dv | 
							 |-  ( ph -> sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) 0 )  | 
						
						
							| 174 | 
							
								
							 | 
							fzfid | 
							 |-  ( ph -> ( 1 ... ( 2 x. N ) ) e. Fin )  | 
						
						
							| 175 | 
							
								
							 | 
							sumz | 
							 |-  ( ( ( 1 ... ( 2 x. N ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( 2 x. N ) ) e. Fin ) -> sum_ k e. ( 1 ... ( 2 x. N ) ) 0 = 0 )  | 
						
						
							| 176 | 
							
								175
							 | 
							olcs | 
							 |-  ( ( 1 ... ( 2 x. N ) ) e. Fin -> sum_ k e. ( 1 ... ( 2 x. N ) ) 0 = 0 )  | 
						
						
							| 177 | 
							
								174 176
							 | 
							syl | 
							 |-  ( ph -> sum_ k e. ( 1 ... ( 2 x. N ) ) 0 = 0 )  | 
						
						
							| 178 | 
							
								173 177
							 | 
							eqtrd | 
							 |-  ( ph -> sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 )  | 
						
						
							| 179 | 
							
								7 178
							 | 
							eqtrd | 
							 |-  ( ph -> ( P pCnt ( ( 2 x. N ) _C N ) ) = 0 )  |