Step |
Hyp |
Ref |
Expression |
1 |
|
bpos.1 |
|- ( ph -> N e. ( ZZ>= ` 5 ) ) |
2 |
|
bpos.2 |
|- ( ph -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
3 |
|
bpos.3 |
|- F = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) ) |
4 |
|
bpos.4 |
|- K = ( |_ ` ( ( 2 x. N ) / 3 ) ) |
5 |
|
simpr |
|- ( ( ph /\ n e. Prime ) -> n e. Prime ) |
6 |
|
5nn |
|- 5 e. NN |
7 |
|
eluznn |
|- ( ( 5 e. NN /\ N e. ( ZZ>= ` 5 ) ) -> N e. NN ) |
8 |
6 1 7
|
sylancr |
|- ( ph -> N e. NN ) |
9 |
8
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
10 |
|
fzctr |
|- ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) ) |
11 |
|
bccl2 |
|- ( N e. ( 0 ... ( 2 x. N ) ) -> ( ( 2 x. N ) _C N ) e. NN ) |
12 |
9 10 11
|
3syl |
|- ( ph -> ( ( 2 x. N ) _C N ) e. NN ) |
13 |
12
|
adantr |
|- ( ( ph /\ n e. Prime ) -> ( ( 2 x. N ) _C N ) e. NN ) |
14 |
5 13
|
pccld |
|- ( ( ph /\ n e. Prime ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
15 |
14
|
ralrimiva |
|- ( ph -> A. n e. Prime ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
16 |
15
|
adantr |
|- ( ( ph /\ p e. Prime ) -> A. n e. Prime ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
17 |
|
2nn |
|- 2 e. NN |
18 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
19 |
17 8 18
|
sylancr |
|- ( ph -> ( 2 x. N ) e. NN ) |
20 |
19
|
nnred |
|- ( ph -> ( 2 x. N ) e. RR ) |
21 |
|
3nn |
|- 3 e. NN |
22 |
|
nndivre |
|- ( ( ( 2 x. N ) e. RR /\ 3 e. NN ) -> ( ( 2 x. N ) / 3 ) e. RR ) |
23 |
20 21 22
|
sylancl |
|- ( ph -> ( ( 2 x. N ) / 3 ) e. RR ) |
24 |
23
|
flcld |
|- ( ph -> ( |_ ` ( ( 2 x. N ) / 3 ) ) e. ZZ ) |
25 |
4 24
|
eqeltrid |
|- ( ph -> K e. ZZ ) |
26 |
|
3re |
|- 3 e. RR |
27 |
26
|
a1i |
|- ( ph -> 3 e. RR ) |
28 |
|
5re |
|- 5 e. RR |
29 |
28
|
a1i |
|- ( ph -> 5 e. RR ) |
30 |
8
|
nnred |
|- ( ph -> N e. RR ) |
31 |
|
3lt5 |
|- 3 < 5 |
32 |
26 28 31
|
ltleii |
|- 3 <_ 5 |
33 |
32
|
a1i |
|- ( ph -> 3 <_ 5 ) |
34 |
|
eluzle |
|- ( N e. ( ZZ>= ` 5 ) -> 5 <_ N ) |
35 |
1 34
|
syl |
|- ( ph -> 5 <_ N ) |
36 |
27 29 30 33 35
|
letrd |
|- ( ph -> 3 <_ N ) |
37 |
|
2re |
|- 2 e. RR |
38 |
|
2pos |
|- 0 < 2 |
39 |
37 38
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
40 |
|
lemul2 |
|- ( ( 3 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 3 <_ N <-> ( 2 x. 3 ) <_ ( 2 x. N ) ) ) |
41 |
26 39 40
|
mp3an13 |
|- ( N e. RR -> ( 3 <_ N <-> ( 2 x. 3 ) <_ ( 2 x. N ) ) ) |
42 |
30 41
|
syl |
|- ( ph -> ( 3 <_ N <-> ( 2 x. 3 ) <_ ( 2 x. N ) ) ) |
43 |
36 42
|
mpbid |
|- ( ph -> ( 2 x. 3 ) <_ ( 2 x. N ) ) |
44 |
|
3pos |
|- 0 < 3 |
45 |
26 44
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
46 |
|
lemuldiv |
|- ( ( 2 e. RR /\ ( 2 x. N ) e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 2 x. 3 ) <_ ( 2 x. N ) <-> 2 <_ ( ( 2 x. N ) / 3 ) ) ) |
47 |
37 45 46
|
mp3an13 |
|- ( ( 2 x. N ) e. RR -> ( ( 2 x. 3 ) <_ ( 2 x. N ) <-> 2 <_ ( ( 2 x. N ) / 3 ) ) ) |
48 |
20 47
|
syl |
|- ( ph -> ( ( 2 x. 3 ) <_ ( 2 x. N ) <-> 2 <_ ( ( 2 x. N ) / 3 ) ) ) |
49 |
43 48
|
mpbid |
|- ( ph -> 2 <_ ( ( 2 x. N ) / 3 ) ) |
50 |
|
2z |
|- 2 e. ZZ |
51 |
|
flge |
|- ( ( ( ( 2 x. N ) / 3 ) e. RR /\ 2 e. ZZ ) -> ( 2 <_ ( ( 2 x. N ) / 3 ) <-> 2 <_ ( |_ ` ( ( 2 x. N ) / 3 ) ) ) ) |
52 |
23 50 51
|
sylancl |
|- ( ph -> ( 2 <_ ( ( 2 x. N ) / 3 ) <-> 2 <_ ( |_ ` ( ( 2 x. N ) / 3 ) ) ) ) |
53 |
49 52
|
mpbid |
|- ( ph -> 2 <_ ( |_ ` ( ( 2 x. N ) / 3 ) ) ) |
54 |
53 4
|
breqtrrdi |
|- ( ph -> 2 <_ K ) |
55 |
50
|
eluz1i |
|- ( K e. ( ZZ>= ` 2 ) <-> ( K e. ZZ /\ 2 <_ K ) ) |
56 |
25 54 55
|
sylanbrc |
|- ( ph -> K e. ( ZZ>= ` 2 ) ) |
57 |
|
eluz2nn |
|- ( K e. ( ZZ>= ` 2 ) -> K e. NN ) |
58 |
56 57
|
syl |
|- ( ph -> K e. NN ) |
59 |
58
|
adantr |
|- ( ( ph /\ p e. Prime ) -> K e. NN ) |
60 |
|
simpr |
|- ( ( ph /\ p e. Prime ) -> p e. Prime ) |
61 |
|
oveq1 |
|- ( n = p -> ( n pCnt ( ( 2 x. N ) _C N ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
62 |
3 16 59 60 61
|
pcmpt |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) ) |
63 |
|
iftrue |
|- ( p <_ K -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
64 |
63
|
adantl |
|- ( ( ( ph /\ p e. Prime ) /\ p <_ K ) -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
65 |
|
iffalse |
|- ( -. p <_ K -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = 0 ) |
66 |
65
|
adantl |
|- ( ( ( ph /\ p e. Prime ) /\ -. p <_ K ) -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = 0 ) |
67 |
25
|
zred |
|- ( ph -> K e. RR ) |
68 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
69 |
68
|
zred |
|- ( p e. Prime -> p e. RR ) |
70 |
|
ltnle |
|- ( ( K e. RR /\ p e. RR ) -> ( K < p <-> -. p <_ K ) ) |
71 |
67 69 70
|
syl2an |
|- ( ( ph /\ p e. Prime ) -> ( K < p <-> -. p <_ K ) ) |
72 |
71
|
biimpar |
|- ( ( ( ph /\ p e. Prime ) /\ -. p <_ K ) -> K < p ) |
73 |
8
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> N e. NN ) |
74 |
|
simplr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> p e. Prime ) |
75 |
37
|
a1i |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> 2 e. RR ) |
76 |
67
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> K e. RR ) |
77 |
68
|
ad2antlr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> p e. ZZ ) |
78 |
77
|
zred |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> p e. RR ) |
79 |
54
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> 2 <_ K ) |
80 |
|
simprl |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> K < p ) |
81 |
75 76 78 79 80
|
lelttrd |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> 2 < p ) |
82 |
4 80
|
eqbrtrrid |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( |_ ` ( ( 2 x. N ) / 3 ) ) < p ) |
83 |
23
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( ( 2 x. N ) / 3 ) e. RR ) |
84 |
|
fllt |
|- ( ( ( ( 2 x. N ) / 3 ) e. RR /\ p e. ZZ ) -> ( ( ( 2 x. N ) / 3 ) < p <-> ( |_ ` ( ( 2 x. N ) / 3 ) ) < p ) ) |
85 |
83 77 84
|
syl2anc |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( ( ( 2 x. N ) / 3 ) < p <-> ( |_ ` ( ( 2 x. N ) / 3 ) ) < p ) ) |
86 |
82 85
|
mpbird |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( ( 2 x. N ) / 3 ) < p ) |
87 |
|
simprr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> p <_ N ) |
88 |
73 74 81 86 87
|
bposlem2 |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
89 |
88
|
expr |
|- ( ( ( ph /\ p e. Prime ) /\ K < p ) -> ( p <_ N -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
90 |
|
rspe |
|- ( ( p e. Prime /\ ( N < p /\ p <_ ( 2 x. N ) ) ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
91 |
90
|
adantll |
|- ( ( ( ph /\ p e. Prime ) /\ ( N < p /\ p <_ ( 2 x. N ) ) ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
92 |
2
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( N < p /\ p <_ ( 2 x. N ) ) ) -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
93 |
91 92
|
pm2.21dd |
|- ( ( ( ph /\ p e. Prime ) /\ ( N < p /\ p <_ ( 2 x. N ) ) ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
94 |
93
|
expr |
|- ( ( ( ph /\ p e. Prime ) /\ N < p ) -> ( p <_ ( 2 x. N ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
95 |
12
|
nnzd |
|- ( ph -> ( ( 2 x. N ) _C N ) e. ZZ ) |
96 |
9
|
faccld |
|- ( ph -> ( ! ` N ) e. NN ) |
97 |
96 96
|
nnmulcld |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) e. NN ) |
98 |
97
|
nnzd |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) e. ZZ ) |
99 |
|
dvdsmul1 |
|- ( ( ( ( 2 x. N ) _C N ) e. ZZ /\ ( ( ! ` N ) x. ( ! ` N ) ) e. ZZ ) -> ( ( 2 x. N ) _C N ) || ( ( ( 2 x. N ) _C N ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
100 |
95 98 99
|
syl2anc |
|- ( ph -> ( ( 2 x. N ) _C N ) || ( ( ( 2 x. N ) _C N ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
101 |
|
bcctr |
|- ( N e. NN0 -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
102 |
9 101
|
syl |
|- ( ph -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
103 |
102
|
oveq1d |
|- ( ph -> ( ( ( 2 x. N ) _C N ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) = ( ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
104 |
19
|
nnnn0d |
|- ( ph -> ( 2 x. N ) e. NN0 ) |
105 |
104
|
faccld |
|- ( ph -> ( ! ` ( 2 x. N ) ) e. NN ) |
106 |
105
|
nncnd |
|- ( ph -> ( ! ` ( 2 x. N ) ) e. CC ) |
107 |
97
|
nncnd |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) e. CC ) |
108 |
97
|
nnne0d |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) =/= 0 ) |
109 |
106 107 108
|
divcan1d |
|- ( ph -> ( ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) = ( ! ` ( 2 x. N ) ) ) |
110 |
103 109
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) _C N ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) = ( ! ` ( 2 x. N ) ) ) |
111 |
100 110
|
breqtrd |
|- ( ph -> ( ( 2 x. N ) _C N ) || ( ! ` ( 2 x. N ) ) ) |
112 |
111
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ( 2 x. N ) _C N ) || ( ! ` ( 2 x. N ) ) ) |
113 |
68
|
adantl |
|- ( ( ph /\ p e. Prime ) -> p e. ZZ ) |
114 |
95
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ( 2 x. N ) _C N ) e. ZZ ) |
115 |
105
|
nnzd |
|- ( ph -> ( ! ` ( 2 x. N ) ) e. ZZ ) |
116 |
115
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ! ` ( 2 x. N ) ) e. ZZ ) |
117 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( ( 2 x. N ) _C N ) e. ZZ /\ ( ! ` ( 2 x. N ) ) e. ZZ ) -> ( ( p || ( ( 2 x. N ) _C N ) /\ ( ( 2 x. N ) _C N ) || ( ! ` ( 2 x. N ) ) ) -> p || ( ! ` ( 2 x. N ) ) ) ) |
118 |
113 114 116 117
|
syl3anc |
|- ( ( ph /\ p e. Prime ) -> ( ( p || ( ( 2 x. N ) _C N ) /\ ( ( 2 x. N ) _C N ) || ( ! ` ( 2 x. N ) ) ) -> p || ( ! ` ( 2 x. N ) ) ) ) |
119 |
112 118
|
mpan2d |
|- ( ( ph /\ p e. Prime ) -> ( p || ( ( 2 x. N ) _C N ) -> p || ( ! ` ( 2 x. N ) ) ) ) |
120 |
|
prmfac1 |
|- ( ( ( 2 x. N ) e. NN0 /\ p e. Prime /\ p || ( ! ` ( 2 x. N ) ) ) -> p <_ ( 2 x. N ) ) |
121 |
120
|
3expia |
|- ( ( ( 2 x. N ) e. NN0 /\ p e. Prime ) -> ( p || ( ! ` ( 2 x. N ) ) -> p <_ ( 2 x. N ) ) ) |
122 |
104 121
|
sylan |
|- ( ( ph /\ p e. Prime ) -> ( p || ( ! ` ( 2 x. N ) ) -> p <_ ( 2 x. N ) ) ) |
123 |
119 122
|
syld |
|- ( ( ph /\ p e. Prime ) -> ( p || ( ( 2 x. N ) _C N ) -> p <_ ( 2 x. N ) ) ) |
124 |
123
|
con3d |
|- ( ( ph /\ p e. Prime ) -> ( -. p <_ ( 2 x. N ) -> -. p || ( ( 2 x. N ) _C N ) ) ) |
125 |
|
id |
|- ( p e. Prime -> p e. Prime ) |
126 |
|
pceq0 |
|- ( ( p e. Prime /\ ( ( 2 x. N ) _C N ) e. NN ) -> ( ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 <-> -. p || ( ( 2 x. N ) _C N ) ) ) |
127 |
125 12 126
|
syl2anr |
|- ( ( ph /\ p e. Prime ) -> ( ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 <-> -. p || ( ( 2 x. N ) _C N ) ) ) |
128 |
124 127
|
sylibrd |
|- ( ( ph /\ p e. Prime ) -> ( -. p <_ ( 2 x. N ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
129 |
128
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ N < p ) -> ( -. p <_ ( 2 x. N ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
130 |
94 129
|
pm2.61d |
|- ( ( ( ph /\ p e. Prime ) /\ N < p ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
131 |
130
|
ex |
|- ( ( ph /\ p e. Prime ) -> ( N < p -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
132 |
131
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ K < p ) -> ( N < p -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
133 |
|
lelttric |
|- ( ( p e. RR /\ N e. RR ) -> ( p <_ N \/ N < p ) ) |
134 |
69 30 133
|
syl2anr |
|- ( ( ph /\ p e. Prime ) -> ( p <_ N \/ N < p ) ) |
135 |
134
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ K < p ) -> ( p <_ N \/ N < p ) ) |
136 |
89 132 135
|
mpjaod |
|- ( ( ( ph /\ p e. Prime ) /\ K < p ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
137 |
72 136
|
syldan |
|- ( ( ( ph /\ p e. Prime ) /\ -. p <_ K ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
138 |
66 137
|
eqtr4d |
|- ( ( ( ph /\ p e. Prime ) /\ -. p <_ K ) -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
139 |
64 138
|
pm2.61dan |
|- ( ( ph /\ p e. Prime ) -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
140 |
62 139
|
eqtrd |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
141 |
140
|
ralrimiva |
|- ( ph -> A. p e. Prime ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
142 |
3 15
|
pcmptcl |
|- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
143 |
142
|
simprd |
|- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
144 |
143 58
|
ffvelrnd |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) e. NN ) |
145 |
144
|
nnnn0d |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) e. NN0 ) |
146 |
12
|
nnnn0d |
|- ( ph -> ( ( 2 x. N ) _C N ) e. NN0 ) |
147 |
|
pc11 |
|- ( ( ( seq 1 ( x. , F ) ` K ) e. NN0 /\ ( ( 2 x. N ) _C N ) e. NN0 ) -> ( ( seq 1 ( x. , F ) ` K ) = ( ( 2 x. N ) _C N ) <-> A. p e. Prime ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) ) |
148 |
145 146 147
|
syl2anc |
|- ( ph -> ( ( seq 1 ( x. , F ) ` K ) = ( ( 2 x. N ) _C N ) <-> A. p e. Prime ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) ) |
149 |
141 148
|
mpbird |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) = ( ( 2 x. N ) _C N ) ) |