| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bpos.1 | 
							 |-  ( ph -> N e. ( ZZ>= ` 5 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bpos.2 | 
							 |-  ( ph -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bpos.3 | 
							 |-  F = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bpos.4 | 
							 |-  K = ( |_ ` ( ( 2 x. N ) / 3 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bpos.5 | 
							 |-  M = ( |_ ` ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							2nn | 
							 |-  2 e. NN  | 
						
						
							| 7 | 
							
								
							 | 
							5nn | 
							 |-  5 e. NN  | 
						
						
							| 8 | 
							
								
							 | 
							eluznn | 
							 |-  ( ( 5 e. NN /\ N e. ( ZZ>= ` 5 ) ) -> N e. NN )  | 
						
						
							| 9 | 
							
								7 1 8
							 | 
							sylancr | 
							 |-  ( ph -> N e. NN )  | 
						
						
							| 10 | 
							
								
							 | 
							nnmulcl | 
							 |-  ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN )  | 
						
						
							| 11 | 
							
								6 9 10
							 | 
							sylancr | 
							 |-  ( ph -> ( 2 x. N ) e. NN )  | 
						
						
							| 12 | 
							
								11
							 | 
							nnred | 
							 |-  ( ph -> ( 2 x. N ) e. RR )  | 
						
						
							| 13 | 
							
								11
							 | 
							nnrpd | 
							 |-  ( ph -> ( 2 x. N ) e. RR+ )  | 
						
						
							| 14 | 
							
								13
							 | 
							rpge0d | 
							 |-  ( ph -> 0 <_ ( 2 x. N ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							resqrtcld | 
							 |-  ( ph -> ( sqrt ` ( 2 x. N ) ) e. RR )  | 
						
						
							| 16 | 
							
								15
							 | 
							flcld | 
							 |-  ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ZZ )  | 
						
						
							| 17 | 
							
								
							 | 
							sqrt9 | 
							 |-  ( sqrt ` 9 ) = 3  | 
						
						
							| 18 | 
							
								
							 | 
							9re | 
							 |-  9 e. RR  | 
						
						
							| 19 | 
							
								18
							 | 
							a1i | 
							 |-  ( ph -> 9 e. RR )  | 
						
						
							| 20 | 
							
								
							 | 
							10re | 
							 |-  ; 1 0 e. RR  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							 |-  ( ph -> ; 1 0 e. RR )  | 
						
						
							| 22 | 
							
								
							 | 
							lep1 | 
							 |-  ( 9 e. RR -> 9 <_ ( 9 + 1 ) )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							ax-mp | 
							 |-  9 <_ ( 9 + 1 )  | 
						
						
							| 24 | 
							
								
							 | 
							9p1e10 | 
							 |-  ( 9 + 1 ) = ; 1 0  | 
						
						
							| 25 | 
							
								23 24
							 | 
							breqtri | 
							 |-  9 <_ ; 1 0  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							 |-  ( ph -> 9 <_ ; 1 0 )  | 
						
						
							| 27 | 
							
								
							 | 
							5cn | 
							 |-  5 e. CC  | 
						
						
							| 28 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 29 | 
							
								
							 | 
							5t2e10 | 
							 |-  ( 5 x. 2 ) = ; 1 0  | 
						
						
							| 30 | 
							
								27 28 29
							 | 
							mulcomli | 
							 |-  ( 2 x. 5 ) = ; 1 0  | 
						
						
							| 31 | 
							
								
							 | 
							eluzle | 
							 |-  ( N e. ( ZZ>= ` 5 ) -> 5 <_ N )  | 
						
						
							| 32 | 
							
								1 31
							 | 
							syl | 
							 |-  ( ph -> 5 <_ N )  | 
						
						
							| 33 | 
							
								9
							 | 
							nnred | 
							 |-  ( ph -> N e. RR )  | 
						
						
							| 34 | 
							
								
							 | 
							5re | 
							 |-  5 e. RR  | 
						
						
							| 35 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 36 | 
							
								
							 | 
							2pos | 
							 |-  0 < 2  | 
						
						
							| 37 | 
							
								35 36
							 | 
							pm3.2i | 
							 |-  ( 2 e. RR /\ 0 < 2 )  | 
						
						
							| 38 | 
							
								
							 | 
							lemul2 | 
							 |-  ( ( 5 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) )  | 
						
						
							| 39 | 
							
								34 37 38
							 | 
							mp3an13 | 
							 |-  ( N e. RR -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) )  | 
						
						
							| 40 | 
							
								33 39
							 | 
							syl | 
							 |-  ( ph -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) )  | 
						
						
							| 41 | 
							
								32 40
							 | 
							mpbid | 
							 |-  ( ph -> ( 2 x. 5 ) <_ ( 2 x. N ) )  | 
						
						
							| 42 | 
							
								30 41
							 | 
							eqbrtrrid | 
							 |-  ( ph -> ; 1 0 <_ ( 2 x. N ) )  | 
						
						
							| 43 | 
							
								19 21 12 26 42
							 | 
							letrd | 
							 |-  ( ph -> 9 <_ ( 2 x. N ) )  | 
						
						
							| 44 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 45 | 
							
								
							 | 
							9pos | 
							 |-  0 < 9  | 
						
						
							| 46 | 
							
								44 18 45
							 | 
							ltleii | 
							 |-  0 <_ 9  | 
						
						
							| 47 | 
							
								18 46
							 | 
							pm3.2i | 
							 |-  ( 9 e. RR /\ 0 <_ 9 )  | 
						
						
							| 48 | 
							
								13
							 | 
							rprege0d | 
							 |-  ( ph -> ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							sqrtle | 
							 |-  ( ( ( 9 e. RR /\ 0 <_ 9 ) /\ ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) ) -> ( 9 <_ ( 2 x. N ) <-> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) )  | 
						
						
							| 50 | 
							
								47 48 49
							 | 
							sylancr | 
							 |-  ( ph -> ( 9 <_ ( 2 x. N ) <-> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) )  | 
						
						
							| 51 | 
							
								43 50
							 | 
							mpbid | 
							 |-  ( ph -> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 52 | 
							
								17 51
							 | 
							eqbrtrrid | 
							 |-  ( ph -> 3 <_ ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							3z | 
							 |-  3 e. ZZ  | 
						
						
							| 54 | 
							
								
							 | 
							flge | 
							 |-  ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 3 e. ZZ ) -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 55 | 
							
								15 53 54
							 | 
							sylancl | 
							 |-  ( ph -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 56 | 
							
								52 55
							 | 
							mpbid | 
							 |-  ( ph -> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) )  | 
						
						
							| 57 | 
							
								53
							 | 
							eluz1i | 
							 |-  ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) <-> ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ZZ /\ 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 58 | 
							
								16 56 57
							 | 
							sylanbrc | 
							 |-  ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							3nn | 
							 |-  3 e. NN  | 
						
						
							| 60 | 
							
								
							 | 
							nndivre | 
							 |-  ( ( ( 2 x. N ) e. RR /\ 3 e. NN ) -> ( ( 2 x. N ) / 3 ) e. RR )  | 
						
						
							| 61 | 
							
								12 59 60
							 | 
							sylancl | 
							 |-  ( ph -> ( ( 2 x. N ) / 3 ) e. RR )  | 
						
						
							| 62 | 
							
								
							 | 
							3re | 
							 |-  3 e. RR  | 
						
						
							| 63 | 
							
								62
							 | 
							a1i | 
							 |-  ( ph -> 3 e. RR )  | 
						
						
							| 64 | 
							
								13
							 | 
							sqrtgt0d | 
							 |-  ( ph -> 0 < ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							lemul2 | 
							 |-  ( ( 3 e. RR /\ ( sqrt ` ( 2 x. N ) ) e. RR /\ ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 0 < ( sqrt ` ( 2 x. N ) ) ) ) -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 66 | 
							
								63 15 15 64 65
							 | 
							syl112anc | 
							 |-  ( ph -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 67 | 
							
								52 66
							 | 
							mpbid | 
							 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							remsqsqrt | 
							 |-  ( ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) -> ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) = ( 2 x. N ) )  | 
						
						
							| 69 | 
							
								12 14 68
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) = ( 2 x. N ) )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							breqtrd | 
							 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( 2 x. N ) )  | 
						
						
							| 71 | 
							
								
							 | 
							3pos | 
							 |-  0 < 3  | 
						
						
							| 72 | 
							
								62 71
							 | 
							pm3.2i | 
							 |-  ( 3 e. RR /\ 0 < 3 )  | 
						
						
							| 73 | 
							
								72
							 | 
							a1i | 
							 |-  ( ph -> ( 3 e. RR /\ 0 < 3 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							lemuldiv | 
							 |-  ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ ( 2 x. N ) e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( 2 x. N ) <-> ( sqrt ` ( 2 x. N ) ) <_ ( ( 2 x. N ) / 3 ) ) )  | 
						
						
							| 75 | 
							
								15 12 73 74
							 | 
							syl3anc | 
							 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) x. 3 ) <_ ( 2 x. N ) <-> ( sqrt ` ( 2 x. N ) ) <_ ( ( 2 x. N ) / 3 ) ) )  | 
						
						
							| 76 | 
							
								70 75
							 | 
							mpbid | 
							 |-  ( ph -> ( sqrt ` ( 2 x. N ) ) <_ ( ( 2 x. N ) / 3 ) )  | 
						
						
							| 77 | 
							
								
							 | 
							flword2 | 
							 |-  ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ ( ( 2 x. N ) / 3 ) e. RR /\ ( sqrt ` ( 2 x. N ) ) <_ ( ( 2 x. N ) / 3 ) ) -> ( |_ ` ( ( 2 x. N ) / 3 ) ) e. ( ZZ>= ` ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 78 | 
							
								15 61 76 77
							 | 
							syl3anc | 
							 |-  ( ph -> ( |_ ` ( ( 2 x. N ) / 3 ) ) e. ( ZZ>= ` ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 79 | 
							
								
							 | 
							elfzuzb | 
							 |-  ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( 3 ... ( |_ ` ( ( 2 x. N ) / 3 ) ) ) <-> ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) /\ ( |_ ` ( ( 2 x. N ) / 3 ) ) e. ( ZZ>= ` ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) ) )  | 
						
						
							| 80 | 
							
								58 78 79
							 | 
							sylanbrc | 
							 |-  ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( 3 ... ( |_ ` ( ( 2 x. N ) / 3 ) ) ) )  | 
						
						
							| 81 | 
							
								4
							 | 
							oveq2i | 
							 |-  ( 3 ... K ) = ( 3 ... ( |_ ` ( ( 2 x. N ) / 3 ) ) )  | 
						
						
							| 82 | 
							
								80 5 81
							 | 
							3eltr4g | 
							 |-  ( ph -> M e. ( 3 ... K ) )  |