| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bpos.1 | 
							 |-  ( ph -> N e. ( ZZ>= ` 5 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bpos.2 | 
							 |-  ( ph -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bpos.3 | 
							 |-  F = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bpos.4 | 
							 |-  K = ( |_ ` ( ( 2 x. N ) / 3 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bpos.5 | 
							 |-  M = ( |_ ` ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							id | 
							 |-  ( n e. Prime -> n e. Prime )  | 
						
						
							| 7 | 
							
								
							 | 
							5nn | 
							 |-  5 e. NN  | 
						
						
							| 8 | 
							
								
							 | 
							eluznn | 
							 |-  ( ( 5 e. NN /\ N e. ( ZZ>= ` 5 ) ) -> N e. NN )  | 
						
						
							| 9 | 
							
								7 1 8
							 | 
							sylancr | 
							 |-  ( ph -> N e. NN )  | 
						
						
							| 10 | 
							
								9
							 | 
							nnnn0d | 
							 |-  ( ph -> N e. NN0 )  | 
						
						
							| 11 | 
							
								
							 | 
							fzctr | 
							 |-  ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							bccl2 | 
							 |-  ( N e. ( 0 ... ( 2 x. N ) ) -> ( ( 2 x. N ) _C N ) e. NN )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							3syl | 
							 |-  ( ph -> ( ( 2 x. N ) _C N ) e. NN )  | 
						
						
							| 14 | 
							
								
							 | 
							pccl | 
							 |-  ( ( n e. Prime /\ ( ( 2 x. N ) _C N ) e. NN ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 )  | 
						
						
							| 15 | 
							
								6 13 14
							 | 
							syl2anr | 
							 |-  ( ( ph /\ n e. Prime ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 )  | 
						
						
							| 16 | 
							
								15
							 | 
							ralrimiva | 
							 |-  ( ph -> A. n e. Prime ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 )  | 
						
						
							| 17 | 
							
								3 16
							 | 
							pcmptcl | 
							 |-  ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							simprd | 
							 |-  ( ph -> seq 1 ( x. , F ) : NN --> NN )  | 
						
						
							| 19 | 
							
								
							 | 
							3nn | 
							 |-  3 e. NN  | 
						
						
							| 20 | 
							
								
							 | 
							2z | 
							 |-  2 e. ZZ  | 
						
						
							| 21 | 
							
								9
							 | 
							nnzd | 
							 |-  ( ph -> N e. ZZ )  | 
						
						
							| 22 | 
							
								
							 | 
							zmulcl | 
							 |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ )  | 
						
						
							| 23 | 
							
								20 21 22
							 | 
							sylancr | 
							 |-  ( ph -> ( 2 x. N ) e. ZZ )  | 
						
						
							| 24 | 
							
								23
							 | 
							zred | 
							 |-  ( ph -> ( 2 x. N ) e. RR )  | 
						
						
							| 25 | 
							
								
							 | 
							2nn | 
							 |-  2 e. NN  | 
						
						
							| 26 | 
							
								
							 | 
							nnmulcl | 
							 |-  ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN )  | 
						
						
							| 27 | 
							
								25 9 26
							 | 
							sylancr | 
							 |-  ( ph -> ( 2 x. N ) e. NN )  | 
						
						
							| 28 | 
							
								27
							 | 
							nnrpd | 
							 |-  ( ph -> ( 2 x. N ) e. RR+ )  | 
						
						
							| 29 | 
							
								28
							 | 
							rpge0d | 
							 |-  ( ph -> 0 <_ ( 2 x. N ) )  | 
						
						
							| 30 | 
							
								24 29
							 | 
							resqrtcld | 
							 |-  ( ph -> ( sqrt ` ( 2 x. N ) ) e. RR )  | 
						
						
							| 31 | 
							
								30
							 | 
							flcld | 
							 |-  ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ZZ )  | 
						
						
							| 32 | 
							
								
							 | 
							sqrt9 | 
							 |-  ( sqrt ` 9 ) = 3  | 
						
						
							| 33 | 
							
								
							 | 
							9re | 
							 |-  9 e. RR  | 
						
						
							| 34 | 
							
								33
							 | 
							a1i | 
							 |-  ( ph -> 9 e. RR )  | 
						
						
							| 35 | 
							
								
							 | 
							10re | 
							 |-  ; 1 0 e. RR  | 
						
						
							| 36 | 
							
								35
							 | 
							a1i | 
							 |-  ( ph -> ; 1 0 e. RR )  | 
						
						
							| 37 | 
							
								
							 | 
							lep1 | 
							 |-  ( 9 e. RR -> 9 <_ ( 9 + 1 ) )  | 
						
						
							| 38 | 
							
								33 37
							 | 
							ax-mp | 
							 |-  9 <_ ( 9 + 1 )  | 
						
						
							| 39 | 
							
								
							 | 
							9p1e10 | 
							 |-  ( 9 + 1 ) = ; 1 0  | 
						
						
							| 40 | 
							
								38 39
							 | 
							breqtri | 
							 |-  9 <_ ; 1 0  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							 |-  ( ph -> 9 <_ ; 1 0 )  | 
						
						
							| 42 | 
							
								
							 | 
							5cn | 
							 |-  5 e. CC  | 
						
						
							| 43 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 44 | 
							
								
							 | 
							5t2e10 | 
							 |-  ( 5 x. 2 ) = ; 1 0  | 
						
						
							| 45 | 
							
								42 43 44
							 | 
							mulcomli | 
							 |-  ( 2 x. 5 ) = ; 1 0  | 
						
						
							| 46 | 
							
								
							 | 
							eluzle | 
							 |-  ( N e. ( ZZ>= ` 5 ) -> 5 <_ N )  | 
						
						
							| 47 | 
							
								1 46
							 | 
							syl | 
							 |-  ( ph -> 5 <_ N )  | 
						
						
							| 48 | 
							
								9
							 | 
							nnred | 
							 |-  ( ph -> N e. RR )  | 
						
						
							| 49 | 
							
								
							 | 
							5re | 
							 |-  5 e. RR  | 
						
						
							| 50 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 51 | 
							
								
							 | 
							2pos | 
							 |-  0 < 2  | 
						
						
							| 52 | 
							
								50 51
							 | 
							pm3.2i | 
							 |-  ( 2 e. RR /\ 0 < 2 )  | 
						
						
							| 53 | 
							
								
							 | 
							lemul2 | 
							 |-  ( ( 5 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) )  | 
						
						
							| 54 | 
							
								49 52 53
							 | 
							mp3an13 | 
							 |-  ( N e. RR -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) )  | 
						
						
							| 55 | 
							
								48 54
							 | 
							syl | 
							 |-  ( ph -> ( 5 <_ N <-> ( 2 x. 5 ) <_ ( 2 x. N ) ) )  | 
						
						
							| 56 | 
							
								47 55
							 | 
							mpbid | 
							 |-  ( ph -> ( 2 x. 5 ) <_ ( 2 x. N ) )  | 
						
						
							| 57 | 
							
								45 56
							 | 
							eqbrtrrid | 
							 |-  ( ph -> ; 1 0 <_ ( 2 x. N ) )  | 
						
						
							| 58 | 
							
								34 36 24 41 57
							 | 
							letrd | 
							 |-  ( ph -> 9 <_ ( 2 x. N ) )  | 
						
						
							| 59 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 60 | 
							
								
							 | 
							9pos | 
							 |-  0 < 9  | 
						
						
							| 61 | 
							
								59 33 60
							 | 
							ltleii | 
							 |-  0 <_ 9  | 
						
						
							| 62 | 
							
								33 61
							 | 
							pm3.2i | 
							 |-  ( 9 e. RR /\ 0 <_ 9 )  | 
						
						
							| 63 | 
							
								24 29
							 | 
							jca | 
							 |-  ( ph -> ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							sqrtle | 
							 |-  ( ( ( 9 e. RR /\ 0 <_ 9 ) /\ ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) ) -> ( 9 <_ ( 2 x. N ) <-> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) )  | 
						
						
							| 65 | 
							
								62 63 64
							 | 
							sylancr | 
							 |-  ( ph -> ( 9 <_ ( 2 x. N ) <-> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) ) )  | 
						
						
							| 66 | 
							
								58 65
							 | 
							mpbid | 
							 |-  ( ph -> ( sqrt ` 9 ) <_ ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 67 | 
							
								32 66
							 | 
							eqbrtrrid | 
							 |-  ( ph -> 3 <_ ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							3z | 
							 |-  3 e. ZZ  | 
						
						
							| 69 | 
							
								
							 | 
							flge | 
							 |-  ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 3 e. ZZ ) -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 70 | 
							
								30 68 69
							 | 
							sylancl | 
							 |-  ( ph -> ( 3 <_ ( sqrt ` ( 2 x. N ) ) <-> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 71 | 
							
								67 70
							 | 
							mpbid | 
							 |-  ( ph -> 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) )  | 
						
						
							| 72 | 
							
								68
							 | 
							eluz1i | 
							 |-  ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) <-> ( ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ZZ /\ 3 <_ ( |_ ` ( sqrt ` ( 2 x. N ) ) ) ) )  | 
						
						
							| 73 | 
							
								31 71 72
							 | 
							sylanbrc | 
							 |-  ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) e. ( ZZ>= ` 3 ) )  | 
						
						
							| 74 | 
							
								5 73
							 | 
							eqeltrid | 
							 |-  ( ph -> M e. ( ZZ>= ` 3 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							eluznn | 
							 |-  ( ( 3 e. NN /\ M e. ( ZZ>= ` 3 ) ) -> M e. NN )  | 
						
						
							| 76 | 
							
								19 74 75
							 | 
							sylancr | 
							 |-  ( ph -> M e. NN )  | 
						
						
							| 77 | 
							
								18 76
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` M ) e. NN )  | 
						
						
							| 78 | 
							
								77
							 | 
							nnred | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` M ) e. RR )  | 
						
						
							| 79 | 
							
								76
							 | 
							nnred | 
							 |-  ( ph -> M e. RR )  | 
						
						
							| 80 | 
							
								
							 | 
							ppicl | 
							 |-  ( M e. RR -> ( ppi ` M ) e. NN0 )  | 
						
						
							| 81 | 
							
								79 80
							 | 
							syl | 
							 |-  ( ph -> ( ppi ` M ) e. NN0 )  | 
						
						
							| 82 | 
							
								27 81
							 | 
							nnexpcld | 
							 |-  ( ph -> ( ( 2 x. N ) ^ ( ppi ` M ) ) e. NN )  | 
						
						
							| 83 | 
							
								82
							 | 
							nnred | 
							 |-  ( ph -> ( ( 2 x. N ) ^ ( ppi ` M ) ) e. RR )  | 
						
						
							| 84 | 
							
								
							 | 
							nndivre | 
							 |-  ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 3 e. NN ) -> ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR )  | 
						
						
							| 85 | 
							
								30 19 84
							 | 
							sylancl | 
							 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR )  | 
						
						
							| 86 | 
							
								
							 | 
							readdcl | 
							 |-  ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR /\ 2 e. RR ) -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) e. RR )  | 
						
						
							| 87 | 
							
								85 50 86
							 | 
							sylancl | 
							 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) e. RR )  | 
						
						
							| 88 | 
							
								24 29 87
							 | 
							recxpcld | 
							 |-  ( ph -> ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) e. RR )  | 
						
						
							| 89 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = 1 -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` 1 ) )  | 
						
						
							| 90 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = 1 -> ( ppi ` x ) = ( ppi ` 1 ) )  | 
						
						
							| 91 | 
							
								
							 | 
							ppi1 | 
							 |-  ( ppi ` 1 ) = 0  | 
						
						
							| 92 | 
							
								90 91
							 | 
							eqtrdi | 
							 |-  ( x = 1 -> ( ppi ` x ) = 0 )  | 
						
						
							| 93 | 
							
								92
							 | 
							oveq2d | 
							 |-  ( x = 1 -> ( ( 2 x. N ) ^ ( ppi ` x ) ) = ( ( 2 x. N ) ^ 0 ) )  | 
						
						
							| 94 | 
							
								89 93
							 | 
							breq12d | 
							 |-  ( x = 1 -> ( ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) <-> ( seq 1 ( x. , F ) ` 1 ) <_ ( ( 2 x. N ) ^ 0 ) ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							imbi2d | 
							 |-  ( x = 1 -> ( ( ph -> ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) ) <-> ( ph -> ( seq 1 ( x. , F ) ` 1 ) <_ ( ( 2 x. N ) ^ 0 ) ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = k -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` k ) )  | 
						
						
							| 97 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = k -> ( ppi ` x ) = ( ppi ` k ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							oveq2d | 
							 |-  ( x = k -> ( ( 2 x. N ) ^ ( ppi ` x ) ) = ( ( 2 x. N ) ^ ( ppi ` k ) ) )  | 
						
						
							| 99 | 
							
								96 98
							 | 
							breq12d | 
							 |-  ( x = k -> ( ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) <-> ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							imbi2d | 
							 |-  ( x = k -> ( ( ph -> ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) ) <-> ( ph -> ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) ) ) )  | 
						
						
							| 101 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = ( k + 1 ) -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` ( k + 1 ) ) )  | 
						
						
							| 102 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = ( k + 1 ) -> ( ppi ` x ) = ( ppi ` ( k + 1 ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							oveq2d | 
							 |-  ( x = ( k + 1 ) -> ( ( 2 x. N ) ^ ( ppi ` x ) ) = ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) )  | 
						
						
							| 104 | 
							
								101 103
							 | 
							breq12d | 
							 |-  ( x = ( k + 1 ) -> ( ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) <-> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							imbi2d | 
							 |-  ( x = ( k + 1 ) -> ( ( ph -> ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) ) <-> ( ph -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) )  | 
						
						
							| 106 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = M -> ( seq 1 ( x. , F ) ` x ) = ( seq 1 ( x. , F ) ` M ) )  | 
						
						
							| 107 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = M -> ( ppi ` x ) = ( ppi ` M ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							oveq2d | 
							 |-  ( x = M -> ( ( 2 x. N ) ^ ( ppi ` x ) ) = ( ( 2 x. N ) ^ ( ppi ` M ) ) )  | 
						
						
							| 109 | 
							
								106 108
							 | 
							breq12d | 
							 |-  ( x = M -> ( ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) <-> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^ ( ppi ` M ) ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							imbi2d | 
							 |-  ( x = M -> ( ( ph -> ( seq 1 ( x. , F ) ` x ) <_ ( ( 2 x. N ) ^ ( ppi ` x ) ) ) <-> ( ph -> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^ ( ppi ` M ) ) ) ) )  | 
						
						
							| 111 | 
							
								
							 | 
							1z | 
							 |-  1 e. ZZ  | 
						
						
							| 112 | 
							
								
							 | 
							seq1 | 
							 |-  ( 1 e. ZZ -> ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 ) )  | 
						
						
							| 113 | 
							
								111 112
							 | 
							ax-mp | 
							 |-  ( seq 1 ( x. , F ) ` 1 ) = ( F ` 1 )  | 
						
						
							| 114 | 
							
								
							 | 
							1nn | 
							 |-  1 e. NN  | 
						
						
							| 115 | 
							
								
							 | 
							1nprm | 
							 |-  -. 1 e. Prime  | 
						
						
							| 116 | 
							
								
							 | 
							eleq1 | 
							 |-  ( n = 1 -> ( n e. Prime <-> 1 e. Prime ) )  | 
						
						
							| 117 | 
							
								115 116
							 | 
							mtbiri | 
							 |-  ( n = 1 -> -. n e. Prime )  | 
						
						
							| 118 | 
							
								117
							 | 
							iffalsed | 
							 |-  ( n = 1 -> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) = 1 )  | 
						
						
							| 119 | 
							
								
							 | 
							1ex | 
							 |-  1 e. _V  | 
						
						
							| 120 | 
							
								118 3 119
							 | 
							fvmpt | 
							 |-  ( 1 e. NN -> ( F ` 1 ) = 1 )  | 
						
						
							| 121 | 
							
								114 120
							 | 
							ax-mp | 
							 |-  ( F ` 1 ) = 1  | 
						
						
							| 122 | 
							
								113 121
							 | 
							eqtri | 
							 |-  ( seq 1 ( x. , F ) ` 1 ) = 1  | 
						
						
							| 123 | 
							
								
							 | 
							1le1 | 
							 |-  1 <_ 1  | 
						
						
							| 124 | 
							
								122 123
							 | 
							eqbrtri | 
							 |-  ( seq 1 ( x. , F ) ` 1 ) <_ 1  | 
						
						
							| 125 | 
							
								23
							 | 
							zcnd | 
							 |-  ( ph -> ( 2 x. N ) e. CC )  | 
						
						
							| 126 | 
							
								125
							 | 
							exp0d | 
							 |-  ( ph -> ( ( 2 x. N ) ^ 0 ) = 1 )  | 
						
						
							| 127 | 
							
								124 126
							 | 
							breqtrrid | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` 1 ) <_ ( ( 2 x. N ) ^ 0 ) )  | 
						
						
							| 128 | 
							
								18
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` k ) e. NN )  | 
						
						
							| 129 | 
							
								128
							 | 
							nnred | 
							 |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` k ) e. RR )  | 
						
						
							| 130 | 
							
								129
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` k ) e. RR )  | 
						
						
							| 131 | 
							
								27
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( 2 x. N ) e. NN )  | 
						
						
							| 132 | 
							
								
							 | 
							nnre | 
							 |-  ( k e. NN -> k e. RR )  | 
						
						
							| 133 | 
							
								132
							 | 
							ad2antlr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> k e. RR )  | 
						
						
							| 134 | 
							
								
							 | 
							ppicl | 
							 |-  ( k e. RR -> ( ppi ` k ) e. NN0 )  | 
						
						
							| 135 | 
							
								133 134
							 | 
							syl | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ppi ` k ) e. NN0 )  | 
						
						
							| 136 | 
							
								131 135
							 | 
							nnexpcld | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` k ) ) e. NN )  | 
						
						
							| 137 | 
							
								136
							 | 
							nnred | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` k ) ) e. RR )  | 
						
						
							| 138 | 
							
								
							 | 
							nnre | 
							 |-  ( ( 2 x. N ) e. NN -> ( 2 x. N ) e. RR )  | 
						
						
							| 139 | 
							
								
							 | 
							nngt0 | 
							 |-  ( ( 2 x. N ) e. NN -> 0 < ( 2 x. N ) )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							jca | 
							 |-  ( ( 2 x. N ) e. NN -> ( ( 2 x. N ) e. RR /\ 0 < ( 2 x. N ) ) )  | 
						
						
							| 141 | 
							
								27 140
							 | 
							syl | 
							 |-  ( ph -> ( ( 2 x. N ) e. RR /\ 0 < ( 2 x. N ) ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) e. RR /\ 0 < ( 2 x. N ) ) )  | 
						
						
							| 143 | 
							
								
							 | 
							lemul1 | 
							 |-  ( ( ( seq 1 ( x. , F ) ` k ) e. RR /\ ( ( 2 x. N ) ^ ( ppi ` k ) ) e. RR /\ ( ( 2 x. N ) e. RR /\ 0 < ( 2 x. N ) ) ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) ) )  | 
						
						
							| 144 | 
							
								130 137 142 143
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) ) )  | 
						
						
							| 145 | 
							
								
							 | 
							nnz | 
							 |-  ( k e. NN -> k e. ZZ )  | 
						
						
							| 146 | 
							
								145
							 | 
							adantl | 
							 |-  ( ( ph /\ k e. NN ) -> k e. ZZ )  | 
						
						
							| 147 | 
							
								
							 | 
							ppiprm | 
							 |-  ( ( k e. ZZ /\ ( k + 1 ) e. Prime ) -> ( ppi ` ( k + 1 ) ) = ( ( ppi ` k ) + 1 ) )  | 
						
						
							| 148 | 
							
								146 147
							 | 
							sylan | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ppi ` ( k + 1 ) ) = ( ( ppi ` k ) + 1 ) )  | 
						
						
							| 149 | 
							
								148
							 | 
							oveq2d | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) = ( ( 2 x. N ) ^ ( ( ppi ` k ) + 1 ) ) )  | 
						
						
							| 150 | 
							
								125
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( 2 x. N ) e. CC )  | 
						
						
							| 151 | 
							
								150 135
							 | 
							expp1d | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ( ppi ` k ) + 1 ) ) = ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) )  | 
						
						
							| 152 | 
							
								149 151
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) = ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) )  | 
						
						
							| 153 | 
							
								152
							 | 
							breq2d | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( ( 2 x. N ) ^ ( ppi ` k ) ) x. ( 2 x. N ) ) ) )  | 
						
						
							| 154 | 
							
								144 153
							 | 
							bitr4d | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) )  | 
						
						
							| 155 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ k e. NN ) -> k e. NN )  | 
						
						
							| 156 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 157 | 
							
								155 156
							 | 
							eleqtrdi | 
							 |-  ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) )  | 
						
						
							| 158 | 
							
								
							 | 
							seqp1 | 
							 |-  ( k e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) )  | 
						
						
							| 159 | 
							
								157 158
							 | 
							syl | 
							 |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) )  | 
						
						
							| 160 | 
							
								159
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) )  | 
						
						
							| 161 | 
							
								
							 | 
							peano2nn | 
							 |-  ( k e. NN -> ( k + 1 ) e. NN )  | 
						
						
							| 162 | 
							
								161
							 | 
							adantl | 
							 |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) e. NN )  | 
						
						
							| 163 | 
							
								
							 | 
							eleq1 | 
							 |-  ( n = ( k + 1 ) -> ( n e. Prime <-> ( k + 1 ) e. Prime ) )  | 
						
						
							| 164 | 
							
								
							 | 
							id | 
							 |-  ( n = ( k + 1 ) -> n = ( k + 1 ) )  | 
						
						
							| 165 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = ( k + 1 ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) = ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) )  | 
						
						
							| 166 | 
							
								164 165
							 | 
							oveq12d | 
							 |-  ( n = ( k + 1 ) -> ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) = ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) )  | 
						
						
							| 167 | 
							
								163 166
							 | 
							ifbieq1d | 
							 |-  ( n = ( k + 1 ) -> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) )  | 
						
						
							| 168 | 
							
								
							 | 
							ovex | 
							 |-  ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) e. _V  | 
						
						
							| 169 | 
							
								168 119
							 | 
							ifex | 
							 |-  if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) e. _V  | 
						
						
							| 170 | 
							
								167 3 169
							 | 
							fvmpt | 
							 |-  ( ( k + 1 ) e. NN -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) )  | 
						
						
							| 171 | 
							
								162 170
							 | 
							syl | 
							 |-  ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) = if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) )  | 
						
						
							| 172 | 
							
								
							 | 
							iftrue | 
							 |-  ( ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) = ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) )  | 
						
						
							| 173 | 
							
								171 172
							 | 
							sylan9eq | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) )  | 
						
						
							| 174 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. NN ) -> N e. NN )  | 
						
						
							| 175 | 
							
								
							 | 
							bposlem1 | 
							 |-  ( ( N e. NN /\ ( k + 1 ) e. Prime ) -> ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) )  | 
						
						
							| 176 | 
							
								174 175
							 | 
							sylan | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) )  | 
						
						
							| 177 | 
							
								173 176
							 | 
							eqbrtrd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) <_ ( 2 x. N ) )  | 
						
						
							| 178 | 
							
								17
							 | 
							simpld | 
							 |-  ( ph -> F : NN --> NN )  | 
						
						
							| 179 | 
							
								
							 | 
							ffvelcdm | 
							 |-  ( ( F : NN --> NN /\ ( k + 1 ) e. NN ) -> ( F ` ( k + 1 ) ) e. NN )  | 
						
						
							| 180 | 
							
								178 161 179
							 | 
							syl2an | 
							 |-  ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. NN )  | 
						
						
							| 181 | 
							
								180
							 | 
							nnred | 
							 |-  ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) e. RR )  | 
						
						
							| 182 | 
							
								181
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) e. RR )  | 
						
						
							| 183 | 
							
								24
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( 2 x. N ) e. RR )  | 
						
						
							| 184 | 
							
								
							 | 
							nnre | 
							 |-  ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( seq 1 ( x. , F ) ` k ) e. RR )  | 
						
						
							| 185 | 
							
								
							 | 
							nngt0 | 
							 |-  ( ( seq 1 ( x. , F ) ` k ) e. NN -> 0 < ( seq 1 ( x. , F ) ` k ) )  | 
						
						
							| 186 | 
							
								184 185
							 | 
							jca | 
							 |-  ( ( seq 1 ( x. , F ) ` k ) e. NN -> ( ( seq 1 ( x. , F ) ` k ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` k ) ) )  | 
						
						
							| 187 | 
							
								128 186
							 | 
							syl | 
							 |-  ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` k ) ) )  | 
						
						
							| 188 | 
							
								187
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` k ) ) )  | 
						
						
							| 189 | 
							
								
							 | 
							lemul2 | 
							 |-  ( ( ( F ` ( k + 1 ) ) e. RR /\ ( 2 x. N ) e. RR /\ ( ( seq 1 ( x. , F ) ` k ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` k ) ) ) -> ( ( F ` ( k + 1 ) ) <_ ( 2 x. N ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) ) )  | 
						
						
							| 190 | 
							
								182 183 188 189
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( F ` ( k + 1 ) ) <_ ( 2 x. N ) <-> ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) ) )  | 
						
						
							| 191 | 
							
								177 190
							 | 
							mpbid | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) )  | 
						
						
							| 192 | 
							
								160 191
							 | 
							eqbrtrd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) )  | 
						
						
							| 193 | 
							
								
							 | 
							ffvelcdm | 
							 |-  ( ( seq 1 ( x. , F ) : NN --> NN /\ ( k + 1 ) e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) e. NN )  | 
						
						
							| 194 | 
							
								18 161 193
							 | 
							syl2an | 
							 |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) e. NN )  | 
						
						
							| 195 | 
							
								194
							 | 
							nnred | 
							 |-  ( ( ph /\ k e. NN ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) e. RR )  | 
						
						
							| 196 | 
							
								27
							 | 
							adantr | 
							 |-  ( ( ph /\ k e. NN ) -> ( 2 x. N ) e. NN )  | 
						
						
							| 197 | 
							
								128 196
							 | 
							nnmulcld | 
							 |-  ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) e. NN )  | 
						
						
							| 198 | 
							
								197
							 | 
							nnred | 
							 |-  ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) e. RR )  | 
						
						
							| 199 | 
							
								162
							 | 
							nnred | 
							 |-  ( ( ph /\ k e. NN ) -> ( k + 1 ) e. RR )  | 
						
						
							| 200 | 
							
								
							 | 
							ppicl | 
							 |-  ( ( k + 1 ) e. RR -> ( ppi ` ( k + 1 ) ) e. NN0 )  | 
						
						
							| 201 | 
							
								199 200
							 | 
							syl | 
							 |-  ( ( ph /\ k e. NN ) -> ( ppi ` ( k + 1 ) ) e. NN0 )  | 
						
						
							| 202 | 
							
								196 201
							 | 
							nnexpcld | 
							 |-  ( ( ph /\ k e. NN ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) e. NN )  | 
						
						
							| 203 | 
							
								202
							 | 
							nnred | 
							 |-  ( ( ph /\ k e. NN ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) e. RR )  | 
						
						
							| 204 | 
							
								
							 | 
							letr | 
							 |-  ( ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) e. RR /\ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) e. RR /\ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) e. RR ) -> ( ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) /\ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) )  | 
						
						
							| 205 | 
							
								195 198 203 204
							 | 
							syl3anc | 
							 |-  ( ( ph /\ k e. NN ) -> ( ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) /\ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) )  | 
						
						
							| 206 | 
							
								205
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) /\ ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) )  | 
						
						
							| 207 | 
							
								192 206
							 | 
							mpand | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( ( seq 1 ( x. , F ) ` k ) x. ( 2 x. N ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) )  | 
						
						
							| 208 | 
							
								154 207
							 | 
							sylbid | 
							 |-  ( ( ( ph /\ k e. NN ) /\ ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) )  | 
						
						
							| 209 | 
							
								159
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) )  | 
						
						
							| 210 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. ( k + 1 ) e. Prime -> if ( ( k + 1 ) e. Prime , ( ( k + 1 ) ^ ( ( k + 1 ) pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) = 1 )  | 
						
						
							| 211 | 
							
								171 210
							 | 
							sylan9eq | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( F ` ( k + 1 ) ) = 1 )  | 
						
						
							| 212 | 
							
								211
							 | 
							oveq2d | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) x. ( F ` ( k + 1 ) ) ) = ( ( seq 1 ( x. , F ) ` k ) x. 1 ) )  | 
						
						
							| 213 | 
							
								128
							 | 
							adantr | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` k ) e. NN )  | 
						
						
							| 214 | 
							
								213
							 | 
							nncnd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` k ) e. CC )  | 
						
						
							| 215 | 
							
								214
							 | 
							mulridd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) x. 1 ) = ( seq 1 ( x. , F ) ` k ) )  | 
						
						
							| 216 | 
							
								209 212 215
							 | 
							3eqtrd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) = ( seq 1 ( x. , F ) ` k ) )  | 
						
						
							| 217 | 
							
								
							 | 
							ppinprm | 
							 |-  ( ( k e. ZZ /\ -. ( k + 1 ) e. Prime ) -> ( ppi ` ( k + 1 ) ) = ( ppi ` k ) )  | 
						
						
							| 218 | 
							
								146 217
							 | 
							sylan | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ppi ` ( k + 1 ) ) = ( ppi ` k ) )  | 
						
						
							| 219 | 
							
								218
							 | 
							oveq2d | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) = ( ( 2 x. N ) ^ ( ppi ` k ) ) )  | 
						
						
							| 220 | 
							
								216 219
							 | 
							breq12d | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) <-> ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) ) )  | 
						
						
							| 221 | 
							
								220
							 | 
							biimprd | 
							 |-  ( ( ( ph /\ k e. NN ) /\ -. ( k + 1 ) e. Prime ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) )  | 
						
						
							| 222 | 
							
								208 221
							 | 
							pm2.61dan | 
							 |-  ( ( ph /\ k e. NN ) -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) )  | 
						
						
							| 223 | 
							
								222
							 | 
							expcom | 
							 |-  ( k e. NN -> ( ph -> ( ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) )  | 
						
						
							| 224 | 
							
								223
							 | 
							a2d | 
							 |-  ( k e. NN -> ( ( ph -> ( seq 1 ( x. , F ) ` k ) <_ ( ( 2 x. N ) ^ ( ppi ` k ) ) ) -> ( ph -> ( seq 1 ( x. , F ) ` ( k + 1 ) ) <_ ( ( 2 x. N ) ^ ( ppi ` ( k + 1 ) ) ) ) ) )  | 
						
						
							| 225 | 
							
								95 100 105 110 127 224
							 | 
							nnind | 
							 |-  ( M e. NN -> ( ph -> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^ ( ppi ` M ) ) ) )  | 
						
						
							| 226 | 
							
								76 225
							 | 
							mpcom | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^ ( ppi ` M ) ) )  | 
						
						
							| 227 | 
							
								
							 | 
							cxpexp | 
							 |-  ( ( ( 2 x. N ) e. CC /\ ( ppi ` M ) e. NN0 ) -> ( ( 2 x. N ) ^c ( ppi ` M ) ) = ( ( 2 x. N ) ^ ( ppi ` M ) ) )  | 
						
						
							| 228 | 
							
								125 81 227
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( 2 x. N ) ^c ( ppi ` M ) ) = ( ( 2 x. N ) ^ ( ppi ` M ) ) )  | 
						
						
							| 229 | 
							
								81
							 | 
							nn0red | 
							 |-  ( ph -> ( ppi ` M ) e. RR )  | 
						
						
							| 230 | 
							
								
							 | 
							nndivre | 
							 |-  ( ( M e. RR /\ 3 e. NN ) -> ( M / 3 ) e. RR )  | 
						
						
							| 231 | 
							
								79 19 230
							 | 
							sylancl | 
							 |-  ( ph -> ( M / 3 ) e. RR )  | 
						
						
							| 232 | 
							
								
							 | 
							readdcl | 
							 |-  ( ( ( M / 3 ) e. RR /\ 2 e. RR ) -> ( ( M / 3 ) + 2 ) e. RR )  | 
						
						
							| 233 | 
							
								231 50 232
							 | 
							sylancl | 
							 |-  ( ph -> ( ( M / 3 ) + 2 ) e. RR )  | 
						
						
							| 234 | 
							
								76
							 | 
							nnnn0d | 
							 |-  ( ph -> M e. NN0 )  | 
						
						
							| 235 | 
							
								234
							 | 
							nn0ge0d | 
							 |-  ( ph -> 0 <_ M )  | 
						
						
							| 236 | 
							
								
							 | 
							ppiub | 
							 |-  ( ( M e. RR /\ 0 <_ M ) -> ( ppi ` M ) <_ ( ( M / 3 ) + 2 ) )  | 
						
						
							| 237 | 
							
								79 235 236
							 | 
							syl2anc | 
							 |-  ( ph -> ( ppi ` M ) <_ ( ( M / 3 ) + 2 ) )  | 
						
						
							| 238 | 
							
								50
							 | 
							a1i | 
							 |-  ( ph -> 2 e. RR )  | 
						
						
							| 239 | 
							
								
							 | 
							flle | 
							 |-  ( ( sqrt ` ( 2 x. N ) ) e. RR -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) <_ ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 240 | 
							
								30 239
							 | 
							syl | 
							 |-  ( ph -> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) <_ ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 241 | 
							
								5 240
							 | 
							eqbrtrid | 
							 |-  ( ph -> M <_ ( sqrt ` ( 2 x. N ) ) )  | 
						
						
							| 242 | 
							
								
							 | 
							3re | 
							 |-  3 e. RR  | 
						
						
							| 243 | 
							
								
							 | 
							3pos | 
							 |-  0 < 3  | 
						
						
							| 244 | 
							
								242 243
							 | 
							pm3.2i | 
							 |-  ( 3 e. RR /\ 0 < 3 )  | 
						
						
							| 245 | 
							
								244
							 | 
							a1i | 
							 |-  ( ph -> ( 3 e. RR /\ 0 < 3 ) )  | 
						
						
							| 246 | 
							
								
							 | 
							lediv1 | 
							 |-  ( ( M e. RR /\ ( sqrt ` ( 2 x. N ) ) e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( M <_ ( sqrt ` ( 2 x. N ) ) <-> ( M / 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) / 3 ) ) )  | 
						
						
							| 247 | 
							
								79 30 245 246
							 | 
							syl3anc | 
							 |-  ( ph -> ( M <_ ( sqrt ` ( 2 x. N ) ) <-> ( M / 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) / 3 ) ) )  | 
						
						
							| 248 | 
							
								241 247
							 | 
							mpbid | 
							 |-  ( ph -> ( M / 3 ) <_ ( ( sqrt ` ( 2 x. N ) ) / 3 ) )  | 
						
						
							| 249 | 
							
								231 85 238 248
							 | 
							leadd1dd | 
							 |-  ( ph -> ( ( M / 3 ) + 2 ) <_ ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) )  | 
						
						
							| 250 | 
							
								229 233 87 237 249
							 | 
							letrd | 
							 |-  ( ph -> ( ppi ` M ) <_ ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) )  | 
						
						
							| 251 | 
							
								
							 | 
							2t1e2 | 
							 |-  ( 2 x. 1 ) = 2  | 
						
						
							| 252 | 
							
								9
							 | 
							nnge1d | 
							 |-  ( ph -> 1 <_ N )  | 
						
						
							| 253 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 254 | 
							
								
							 | 
							lemul2 | 
							 |-  ( ( 1 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 1 <_ N <-> ( 2 x. 1 ) <_ ( 2 x. N ) ) )  | 
						
						
							| 255 | 
							
								253 52 254
							 | 
							mp3an13 | 
							 |-  ( N e. RR -> ( 1 <_ N <-> ( 2 x. 1 ) <_ ( 2 x. N ) ) )  | 
						
						
							| 256 | 
							
								48 255
							 | 
							syl | 
							 |-  ( ph -> ( 1 <_ N <-> ( 2 x. 1 ) <_ ( 2 x. N ) ) )  | 
						
						
							| 257 | 
							
								252 256
							 | 
							mpbid | 
							 |-  ( ph -> ( 2 x. 1 ) <_ ( 2 x. N ) )  | 
						
						
							| 258 | 
							
								251 257
							 | 
							eqbrtrrid | 
							 |-  ( ph -> 2 <_ ( 2 x. N ) )  | 
						
						
							| 259 | 
							
								20
							 | 
							eluz1i | 
							 |-  ( ( 2 x. N ) e. ( ZZ>= ` 2 ) <-> ( ( 2 x. N ) e. ZZ /\ 2 <_ ( 2 x. N ) ) )  | 
						
						
							| 260 | 
							
								23 258 259
							 | 
							sylanbrc | 
							 |-  ( ph -> ( 2 x. N ) e. ( ZZ>= ` 2 ) )  | 
						
						
							| 261 | 
							
								
							 | 
							eluz2gt1 | 
							 |-  ( ( 2 x. N ) e. ( ZZ>= ` 2 ) -> 1 < ( 2 x. N ) )  | 
						
						
							| 262 | 
							
								260 261
							 | 
							syl | 
							 |-  ( ph -> 1 < ( 2 x. N ) )  | 
						
						
							| 263 | 
							
								24 262 229 87
							 | 
							cxpled | 
							 |-  ( ph -> ( ( ppi ` M ) <_ ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) <-> ( ( 2 x. N ) ^c ( ppi ` M ) ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) ) )  | 
						
						
							| 264 | 
							
								250 263
							 | 
							mpbid | 
							 |-  ( ph -> ( ( 2 x. N ) ^c ( ppi ` M ) ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) )  | 
						
						
							| 265 | 
							
								228 264
							 | 
							eqbrtrrd | 
							 |-  ( ph -> ( ( 2 x. N ) ^ ( ppi ` M ) ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) )  | 
						
						
							| 266 | 
							
								78 83 88 226 265
							 | 
							letrd | 
							 |-  ( ph -> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) )  |