Step |
Hyp |
Ref |
Expression |
1 |
|
bpos.1 |
|- ( ph -> N e. ( ZZ>= ` 5 ) ) |
2 |
|
bpos.2 |
|- ( ph -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
3 |
|
bpos.3 |
|- F = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) ) |
4 |
|
bpos.4 |
|- K = ( |_ ` ( ( 2 x. N ) / 3 ) ) |
5 |
|
bpos.5 |
|- M = ( |_ ` ( sqrt ` ( 2 x. N ) ) ) |
6 |
|
4nn |
|- 4 e. NN |
7 |
|
5nn |
|- 5 e. NN |
8 |
|
eluznn |
|- ( ( 5 e. NN /\ N e. ( ZZ>= ` 5 ) ) -> N e. NN ) |
9 |
7 1 8
|
sylancr |
|- ( ph -> N e. NN ) |
10 |
9
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
11 |
|
nnexpcl |
|- ( ( 4 e. NN /\ N e. NN0 ) -> ( 4 ^ N ) e. NN ) |
12 |
6 10 11
|
sylancr |
|- ( ph -> ( 4 ^ N ) e. NN ) |
13 |
12
|
nnred |
|- ( ph -> ( 4 ^ N ) e. RR ) |
14 |
13 9
|
nndivred |
|- ( ph -> ( ( 4 ^ N ) / N ) e. RR ) |
15 |
|
fzctr |
|- ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) ) |
16 |
10 15
|
syl |
|- ( ph -> N e. ( 0 ... ( 2 x. N ) ) ) |
17 |
|
bccl2 |
|- ( N e. ( 0 ... ( 2 x. N ) ) -> ( ( 2 x. N ) _C N ) e. NN ) |
18 |
16 17
|
syl |
|- ( ph -> ( ( 2 x. N ) _C N ) e. NN ) |
19 |
18
|
nnred |
|- ( ph -> ( ( 2 x. N ) _C N ) e. RR ) |
20 |
|
2nn |
|- 2 e. NN |
21 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
22 |
20 9 21
|
sylancr |
|- ( ph -> ( 2 x. N ) e. NN ) |
23 |
22
|
nnrpd |
|- ( ph -> ( 2 x. N ) e. RR+ ) |
24 |
22
|
nnred |
|- ( ph -> ( 2 x. N ) e. RR ) |
25 |
23
|
rpge0d |
|- ( ph -> 0 <_ ( 2 x. N ) ) |
26 |
24 25
|
resqrtcld |
|- ( ph -> ( sqrt ` ( 2 x. N ) ) e. RR ) |
27 |
|
3nn |
|- 3 e. NN |
28 |
|
nndivre |
|- ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 3 e. NN ) -> ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR ) |
29 |
26 27 28
|
sylancl |
|- ( ph -> ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR ) |
30 |
|
2re |
|- 2 e. RR |
31 |
|
readdcl |
|- ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR /\ 2 e. RR ) -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) e. RR ) |
32 |
29 30 31
|
sylancl |
|- ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) e. RR ) |
33 |
23 32
|
rpcxpcld |
|- ( ph -> ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) e. RR+ ) |
34 |
33
|
rpred |
|- ( ph -> ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) e. RR ) |
35 |
|
2rp |
|- 2 e. RR+ |
36 |
|
nnmulcl |
|- ( ( 4 e. NN /\ N e. NN ) -> ( 4 x. N ) e. NN ) |
37 |
6 9 36
|
sylancr |
|- ( ph -> ( 4 x. N ) e. NN ) |
38 |
37
|
nnred |
|- ( ph -> ( 4 x. N ) e. RR ) |
39 |
|
nndivre |
|- ( ( ( 4 x. N ) e. RR /\ 3 e. NN ) -> ( ( 4 x. N ) / 3 ) e. RR ) |
40 |
38 27 39
|
sylancl |
|- ( ph -> ( ( 4 x. N ) / 3 ) e. RR ) |
41 |
|
5re |
|- 5 e. RR |
42 |
|
resubcl |
|- ( ( ( ( 4 x. N ) / 3 ) e. RR /\ 5 e. RR ) -> ( ( ( 4 x. N ) / 3 ) - 5 ) e. RR ) |
43 |
40 41 42
|
sylancl |
|- ( ph -> ( ( ( 4 x. N ) / 3 ) - 5 ) e. RR ) |
44 |
|
rpcxpcl |
|- ( ( 2 e. RR+ /\ ( ( ( 4 x. N ) / 3 ) - 5 ) e. RR ) -> ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) e. RR+ ) |
45 |
35 43 44
|
sylancr |
|- ( ph -> ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) e. RR+ ) |
46 |
45
|
rpred |
|- ( ph -> ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) e. RR ) |
47 |
34 46
|
remulcld |
|- ( ph -> ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) e. RR ) |
48 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
49 |
|
4z |
|- 4 e. ZZ |
50 |
|
uzid |
|- ( 4 e. ZZ -> 4 e. ( ZZ>= ` 4 ) ) |
51 |
|
peano2uz |
|- ( 4 e. ( ZZ>= ` 4 ) -> ( 4 + 1 ) e. ( ZZ>= ` 4 ) ) |
52 |
49 50 51
|
mp2b |
|- ( 4 + 1 ) e. ( ZZ>= ` 4 ) |
53 |
48 52
|
eqeltri |
|- 5 e. ( ZZ>= ` 4 ) |
54 |
|
eqid |
|- ( ZZ>= ` 4 ) = ( ZZ>= ` 4 ) |
55 |
54
|
uztrn2 |
|- ( ( 5 e. ( ZZ>= ` 4 ) /\ N e. ( ZZ>= ` 5 ) ) -> N e. ( ZZ>= ` 4 ) ) |
56 |
53 1 55
|
sylancr |
|- ( ph -> N e. ( ZZ>= ` 4 ) ) |
57 |
|
bclbnd |
|- ( N e. ( ZZ>= ` 4 ) -> ( ( 4 ^ N ) / N ) < ( ( 2 x. N ) _C N ) ) |
58 |
56 57
|
syl |
|- ( ph -> ( ( 4 ^ N ) / N ) < ( ( 2 x. N ) _C N ) ) |
59 |
|
id |
|- ( n e. Prime -> n e. Prime ) |
60 |
|
pccl |
|- ( ( n e. Prime /\ ( ( 2 x. N ) _C N ) e. NN ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
61 |
59 18 60
|
syl2anr |
|- ( ( ph /\ n e. Prime ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
62 |
61
|
ralrimiva |
|- ( ph -> A. n e. Prime ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
63 |
3 62
|
pcmptcl |
|- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
64 |
63
|
simprd |
|- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
65 |
1 2 3 4 5
|
bposlem4 |
|- ( ph -> M e. ( 3 ... K ) ) |
66 |
|
elfzuz |
|- ( M e. ( 3 ... K ) -> M e. ( ZZ>= ` 3 ) ) |
67 |
65 66
|
syl |
|- ( ph -> M e. ( ZZ>= ` 3 ) ) |
68 |
|
eluznn |
|- ( ( 3 e. NN /\ M e. ( ZZ>= ` 3 ) ) -> M e. NN ) |
69 |
27 67 68
|
sylancr |
|- ( ph -> M e. NN ) |
70 |
64 69
|
ffvelrnd |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) e. NN ) |
71 |
70
|
nnred |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) e. RR ) |
72 |
|
2z |
|- 2 e. ZZ |
73 |
|
nndivre |
|- ( ( ( 2 x. N ) e. RR /\ 3 e. NN ) -> ( ( 2 x. N ) / 3 ) e. RR ) |
74 |
24 27 73
|
sylancl |
|- ( ph -> ( ( 2 x. N ) / 3 ) e. RR ) |
75 |
74
|
flcld |
|- ( ph -> ( |_ ` ( ( 2 x. N ) / 3 ) ) e. ZZ ) |
76 |
4 75
|
eqeltrid |
|- ( ph -> K e. ZZ ) |
77 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 x. K ) e. ZZ ) |
78 |
72 76 77
|
sylancr |
|- ( ph -> ( 2 x. K ) e. ZZ ) |
79 |
7
|
nnzi |
|- 5 e. ZZ |
80 |
|
zsubcl |
|- ( ( ( 2 x. K ) e. ZZ /\ 5 e. ZZ ) -> ( ( 2 x. K ) - 5 ) e. ZZ ) |
81 |
78 79 80
|
sylancl |
|- ( ph -> ( ( 2 x. K ) - 5 ) e. ZZ ) |
82 |
81
|
zred |
|- ( ph -> ( ( 2 x. K ) - 5 ) e. RR ) |
83 |
|
rpcxpcl |
|- ( ( 2 e. RR+ /\ ( ( 2 x. K ) - 5 ) e. RR ) -> ( 2 ^c ( ( 2 x. K ) - 5 ) ) e. RR+ ) |
84 |
35 82 83
|
sylancr |
|- ( ph -> ( 2 ^c ( ( 2 x. K ) - 5 ) ) e. RR+ ) |
85 |
84
|
rpred |
|- ( ph -> ( 2 ^c ( ( 2 x. K ) - 5 ) ) e. RR ) |
86 |
71 85
|
remulcld |
|- ( ph -> ( ( seq 1 ( x. , F ) ` M ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) e. RR ) |
87 |
1 2 3 4
|
bposlem3 |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) = ( ( 2 x. N ) _C N ) ) |
88 |
|
elfzuz3 |
|- ( M e. ( 3 ... K ) -> K e. ( ZZ>= ` M ) ) |
89 |
65 88
|
syl |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
90 |
3 62 69 89
|
pcmptdvds |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) || ( seq 1 ( x. , F ) ` K ) ) |
91 |
70
|
nnzd |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) e. ZZ ) |
92 |
70
|
nnne0d |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) =/= 0 ) |
93 |
|
uztrn |
|- ( ( K e. ( ZZ>= ` M ) /\ M e. ( ZZ>= ` 3 ) ) -> K e. ( ZZ>= ` 3 ) ) |
94 |
89 67 93
|
syl2anc |
|- ( ph -> K e. ( ZZ>= ` 3 ) ) |
95 |
|
eluznn |
|- ( ( 3 e. NN /\ K e. ( ZZ>= ` 3 ) ) -> K e. NN ) |
96 |
27 94 95
|
sylancr |
|- ( ph -> K e. NN ) |
97 |
64 96
|
ffvelrnd |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) e. NN ) |
98 |
97
|
nnzd |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) e. ZZ ) |
99 |
|
dvdsval2 |
|- ( ( ( seq 1 ( x. , F ) ` M ) e. ZZ /\ ( seq 1 ( x. , F ) ` M ) =/= 0 /\ ( seq 1 ( x. , F ) ` K ) e. ZZ ) -> ( ( seq 1 ( x. , F ) ` M ) || ( seq 1 ( x. , F ) ` K ) <-> ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) e. ZZ ) ) |
100 |
91 92 98 99
|
syl3anc |
|- ( ph -> ( ( seq 1 ( x. , F ) ` M ) || ( seq 1 ( x. , F ) ` K ) <-> ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) e. ZZ ) ) |
101 |
90 100
|
mpbid |
|- ( ph -> ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) e. ZZ ) |
102 |
101
|
zred |
|- ( ph -> ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) e. RR ) |
103 |
69
|
nnred |
|- ( ph -> M e. RR ) |
104 |
76
|
zred |
|- ( ph -> K e. RR ) |
105 |
|
eluzle |
|- ( K e. ( ZZ>= ` M ) -> M <_ K ) |
106 |
89 105
|
syl |
|- ( ph -> M <_ K ) |
107 |
|
efchtdvds |
|- ( ( M e. RR /\ K e. RR /\ M <_ K ) -> ( exp ` ( theta ` M ) ) || ( exp ` ( theta ` K ) ) ) |
108 |
103 104 106 107
|
syl3anc |
|- ( ph -> ( exp ` ( theta ` M ) ) || ( exp ` ( theta ` K ) ) ) |
109 |
|
efchtcl |
|- ( M e. RR -> ( exp ` ( theta ` M ) ) e. NN ) |
110 |
103 109
|
syl |
|- ( ph -> ( exp ` ( theta ` M ) ) e. NN ) |
111 |
110
|
nnzd |
|- ( ph -> ( exp ` ( theta ` M ) ) e. ZZ ) |
112 |
110
|
nnne0d |
|- ( ph -> ( exp ` ( theta ` M ) ) =/= 0 ) |
113 |
|
efchtcl |
|- ( K e. RR -> ( exp ` ( theta ` K ) ) e. NN ) |
114 |
104 113
|
syl |
|- ( ph -> ( exp ` ( theta ` K ) ) e. NN ) |
115 |
114
|
nnzd |
|- ( ph -> ( exp ` ( theta ` K ) ) e. ZZ ) |
116 |
|
dvdsval2 |
|- ( ( ( exp ` ( theta ` M ) ) e. ZZ /\ ( exp ` ( theta ` M ) ) =/= 0 /\ ( exp ` ( theta ` K ) ) e. ZZ ) -> ( ( exp ` ( theta ` M ) ) || ( exp ` ( theta ` K ) ) <-> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) e. ZZ ) ) |
117 |
111 112 115 116
|
syl3anc |
|- ( ph -> ( ( exp ` ( theta ` M ) ) || ( exp ` ( theta ` K ) ) <-> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) e. ZZ ) ) |
118 |
108 117
|
mpbid |
|- ( ph -> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) e. ZZ ) |
119 |
118
|
zred |
|- ( ph -> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) e. RR ) |
120 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
121 |
|
fllt |
|- ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ p e. ZZ ) -> ( ( sqrt ` ( 2 x. N ) ) < p <-> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) < p ) ) |
122 |
26 120 121
|
syl2an |
|- ( ( ph /\ p e. Prime ) -> ( ( sqrt ` ( 2 x. N ) ) < p <-> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) < p ) ) |
123 |
5
|
breq1i |
|- ( M < p <-> ( |_ ` ( sqrt ` ( 2 x. N ) ) ) < p ) |
124 |
122 123
|
bitr4di |
|- ( ( ph /\ p e. Prime ) -> ( ( sqrt ` ( 2 x. N ) ) < p <-> M < p ) ) |
125 |
120
|
zred |
|- ( p e. Prime -> p e. RR ) |
126 |
|
ltnle |
|- ( ( M e. RR /\ p e. RR ) -> ( M < p <-> -. p <_ M ) ) |
127 |
103 125 126
|
syl2an |
|- ( ( ph /\ p e. Prime ) -> ( M < p <-> -. p <_ M ) ) |
128 |
124 127
|
bitrd |
|- ( ( ph /\ p e. Prime ) -> ( ( sqrt ` ( 2 x. N ) ) < p <-> -. p <_ M ) ) |
129 |
|
bposlem1 |
|- ( ( N e. NN /\ p e. Prime ) -> ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) ) |
130 |
9 129
|
sylan |
|- ( ( ph /\ p e. Prime ) -> ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) ) |
131 |
125
|
adantl |
|- ( ( ph /\ p e. Prime ) -> p e. RR ) |
132 |
|
id |
|- ( p e. Prime -> p e. Prime ) |
133 |
|
pccl |
|- ( ( p e. Prime /\ ( ( 2 x. N ) _C N ) e. NN ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
134 |
132 18 133
|
syl2anr |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
135 |
131 134
|
reexpcld |
|- ( ( ph /\ p e. Prime ) -> ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) e. RR ) |
136 |
24
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( 2 x. N ) e. RR ) |
137 |
131
|
resqcld |
|- ( ( ph /\ p e. Prime ) -> ( p ^ 2 ) e. RR ) |
138 |
|
lelttr |
|- ( ( ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) e. RR /\ ( 2 x. N ) e. RR /\ ( p ^ 2 ) e. RR ) -> ( ( ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) /\ ( 2 x. N ) < ( p ^ 2 ) ) -> ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) < ( p ^ 2 ) ) ) |
139 |
135 136 137 138
|
syl3anc |
|- ( ( ph /\ p e. Prime ) -> ( ( ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) <_ ( 2 x. N ) /\ ( 2 x. N ) < ( p ^ 2 ) ) -> ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) < ( p ^ 2 ) ) ) |
140 |
130 139
|
mpand |
|- ( ( ph /\ p e. Prime ) -> ( ( 2 x. N ) < ( p ^ 2 ) -> ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) < ( p ^ 2 ) ) ) |
141 |
|
resqrtth |
|- ( ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) -> ( ( sqrt ` ( 2 x. N ) ) ^ 2 ) = ( 2 x. N ) ) |
142 |
24 25 141
|
syl2anc |
|- ( ph -> ( ( sqrt ` ( 2 x. N ) ) ^ 2 ) = ( 2 x. N ) ) |
143 |
142
|
breq1d |
|- ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) ^ 2 ) < ( p ^ 2 ) <-> ( 2 x. N ) < ( p ^ 2 ) ) ) |
144 |
143
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ( ( sqrt ` ( 2 x. N ) ) ^ 2 ) < ( p ^ 2 ) <-> ( 2 x. N ) < ( p ^ 2 ) ) ) |
145 |
134
|
nn0zd |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) e. ZZ ) |
146 |
72
|
a1i |
|- ( ( ph /\ p e. Prime ) -> 2 e. ZZ ) |
147 |
|
prmgt1 |
|- ( p e. Prime -> 1 < p ) |
148 |
147
|
adantl |
|- ( ( ph /\ p e. Prime ) -> 1 < p ) |
149 |
131 145 146 148
|
ltexp2d |
|- ( ( ph /\ p e. Prime ) -> ( ( p pCnt ( ( 2 x. N ) _C N ) ) < 2 <-> ( p ^ ( p pCnt ( ( 2 x. N ) _C N ) ) ) < ( p ^ 2 ) ) ) |
150 |
140 144 149
|
3imtr4d |
|- ( ( ph /\ p e. Prime ) -> ( ( ( sqrt ` ( 2 x. N ) ) ^ 2 ) < ( p ^ 2 ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) < 2 ) ) |
151 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
152 |
151
|
breq2i |
|- ( ( p pCnt ( ( 2 x. N ) _C N ) ) < 2 <-> ( p pCnt ( ( 2 x. N ) _C N ) ) < ( 1 + 1 ) ) |
153 |
150 152
|
syl6ib |
|- ( ( ph /\ p e. Prime ) -> ( ( ( sqrt ` ( 2 x. N ) ) ^ 2 ) < ( p ^ 2 ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) < ( 1 + 1 ) ) ) |
154 |
26
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( sqrt ` ( 2 x. N ) ) e. RR ) |
155 |
24 25
|
sqrtge0d |
|- ( ph -> 0 <_ ( sqrt ` ( 2 x. N ) ) ) |
156 |
155
|
adantr |
|- ( ( ph /\ p e. Prime ) -> 0 <_ ( sqrt ` ( 2 x. N ) ) ) |
157 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
158 |
157
|
nnrpd |
|- ( p e. Prime -> p e. RR+ ) |
159 |
158
|
rpge0d |
|- ( p e. Prime -> 0 <_ p ) |
160 |
159
|
adantl |
|- ( ( ph /\ p e. Prime ) -> 0 <_ p ) |
161 |
154 131 156 160
|
lt2sqd |
|- ( ( ph /\ p e. Prime ) -> ( ( sqrt ` ( 2 x. N ) ) < p <-> ( ( sqrt ` ( 2 x. N ) ) ^ 2 ) < ( p ^ 2 ) ) ) |
162 |
|
1z |
|- 1 e. ZZ |
163 |
|
zleltp1 |
|- ( ( ( p pCnt ( ( 2 x. N ) _C N ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( p pCnt ( ( 2 x. N ) _C N ) ) <_ 1 <-> ( p pCnt ( ( 2 x. N ) _C N ) ) < ( 1 + 1 ) ) ) |
164 |
145 162 163
|
sylancl |
|- ( ( ph /\ p e. Prime ) -> ( ( p pCnt ( ( 2 x. N ) _C N ) ) <_ 1 <-> ( p pCnt ( ( 2 x. N ) _C N ) ) < ( 1 + 1 ) ) ) |
165 |
153 161 164
|
3imtr4d |
|- ( ( ph /\ p e. Prime ) -> ( ( sqrt ` ( 2 x. N ) ) < p -> ( p pCnt ( ( 2 x. N ) _C N ) ) <_ 1 ) ) |
166 |
128 165
|
sylbird |
|- ( ( ph /\ p e. Prime ) -> ( -. p <_ M -> ( p pCnt ( ( 2 x. N ) _C N ) ) <_ 1 ) ) |
167 |
166
|
imp |
|- ( ( ( ph /\ p e. Prime ) /\ -. p <_ M ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) <_ 1 ) |
168 |
167
|
adantrl |
|- ( ( ( ph /\ p e. Prime ) /\ ( p <_ K /\ -. p <_ M ) ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) <_ 1 ) |
169 |
|
iftrue |
|- ( ( p <_ K /\ -. p <_ M ) -> if ( ( p <_ K /\ -. p <_ M ) , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
170 |
169
|
adantl |
|- ( ( ( ph /\ p e. Prime ) /\ ( p <_ K /\ -. p <_ M ) ) -> if ( ( p <_ K /\ -. p <_ M ) , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
171 |
|
iftrue |
|- ( ( p <_ K /\ -. p <_ M ) -> if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) = 1 ) |
172 |
171
|
adantl |
|- ( ( ( ph /\ p e. Prime ) /\ ( p <_ K /\ -. p <_ M ) ) -> if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) = 1 ) |
173 |
168 170 172
|
3brtr4d |
|- ( ( ( ph /\ p e. Prime ) /\ ( p <_ K /\ -. p <_ M ) ) -> if ( ( p <_ K /\ -. p <_ M ) , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) <_ if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) ) |
174 |
|
0le0 |
|- 0 <_ 0 |
175 |
|
iffalse |
|- ( -. ( p <_ K /\ -. p <_ M ) -> if ( ( p <_ K /\ -. p <_ M ) , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = 0 ) |
176 |
|
iffalse |
|- ( -. ( p <_ K /\ -. p <_ M ) -> if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) = 0 ) |
177 |
175 176
|
breq12d |
|- ( -. ( p <_ K /\ -. p <_ M ) -> ( if ( ( p <_ K /\ -. p <_ M ) , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) <_ if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) <-> 0 <_ 0 ) ) |
178 |
174 177
|
mpbiri |
|- ( -. ( p <_ K /\ -. p <_ M ) -> if ( ( p <_ K /\ -. p <_ M ) , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) <_ if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) ) |
179 |
178
|
adantl |
|- ( ( ( ph /\ p e. Prime ) /\ -. ( p <_ K /\ -. p <_ M ) ) -> if ( ( p <_ K /\ -. p <_ M ) , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) <_ if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) ) |
180 |
173 179
|
pm2.61dan |
|- ( ( ph /\ p e. Prime ) -> if ( ( p <_ K /\ -. p <_ M ) , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) <_ if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) ) |
181 |
62
|
adantr |
|- ( ( ph /\ p e. Prime ) -> A. n e. Prime ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
182 |
69
|
adantr |
|- ( ( ph /\ p e. Prime ) -> M e. NN ) |
183 |
|
simpr |
|- ( ( ph /\ p e. Prime ) -> p e. Prime ) |
184 |
|
oveq1 |
|- ( n = p -> ( n pCnt ( ( 2 x. N ) _C N ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
185 |
89
|
adantr |
|- ( ( ph /\ p e. Prime ) -> K e. ( ZZ>= ` M ) ) |
186 |
3 181 182 183 184 185
|
pcmpt2 |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) ) = if ( ( p <_ K /\ -. p <_ M ) , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) ) |
187 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , n , 1 ) ) = ( n e. NN |-> if ( n e. Prime , n , 1 ) ) |
188 |
187
|
prmorcht |
|- ( K e. NN -> ( exp ` ( theta ` K ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` K ) ) |
189 |
96 188
|
syl |
|- ( ph -> ( exp ` ( theta ` K ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` K ) ) |
190 |
187
|
prmorcht |
|- ( M e. NN -> ( exp ` ( theta ` M ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` M ) ) |
191 |
69 190
|
syl |
|- ( ph -> ( exp ` ( theta ` M ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` M ) ) |
192 |
189 191
|
oveq12d |
|- ( ph -> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` K ) / ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` M ) ) ) |
193 |
192
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` K ) / ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` M ) ) ) |
194 |
193
|
oveq2d |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) = ( p pCnt ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` K ) / ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` M ) ) ) ) |
195 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
196 |
195
|
exp1d |
|- ( n e. NN -> ( n ^ 1 ) = n ) |
197 |
196
|
ifeq1d |
|- ( n e. NN -> if ( n e. Prime , ( n ^ 1 ) , 1 ) = if ( n e. Prime , n , 1 ) ) |
198 |
197
|
mpteq2ia |
|- ( n e. NN |-> if ( n e. Prime , ( n ^ 1 ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , n , 1 ) ) |
199 |
198
|
eqcomi |
|- ( n e. NN |-> if ( n e. Prime , n , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( n ^ 1 ) , 1 ) ) |
200 |
|
1nn0 |
|- 1 e. NN0 |
201 |
200
|
a1i |
|- ( ( ph /\ n e. Prime ) -> 1 e. NN0 ) |
202 |
201
|
ralrimiva |
|- ( ph -> A. n e. Prime 1 e. NN0 ) |
203 |
202
|
adantr |
|- ( ( ph /\ p e. Prime ) -> A. n e. Prime 1 e. NN0 ) |
204 |
|
eqidd |
|- ( n = p -> 1 = 1 ) |
205 |
199 203 182 183 204 185
|
pcmpt2 |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` K ) / ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , n , 1 ) ) ) ` M ) ) ) = if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) ) |
206 |
194 205
|
eqtrd |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) = if ( ( p <_ K /\ -. p <_ M ) , 1 , 0 ) ) |
207 |
180 186 206
|
3brtr4d |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) ) <_ ( p pCnt ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) ) |
208 |
207
|
ralrimiva |
|- ( ph -> A. p e. Prime ( p pCnt ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) ) <_ ( p pCnt ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) ) |
209 |
|
pc2dvds |
|- ( ( ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) e. ZZ /\ ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) e. ZZ ) -> ( ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) || ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) <-> A. p e. Prime ( p pCnt ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) ) <_ ( p pCnt ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) ) ) |
210 |
101 118 209
|
syl2anc |
|- ( ph -> ( ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) || ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) <-> A. p e. Prime ( p pCnt ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) ) <_ ( p pCnt ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) ) ) |
211 |
208 210
|
mpbird |
|- ( ph -> ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) || ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) |
212 |
114
|
nnred |
|- ( ph -> ( exp ` ( theta ` K ) ) e. RR ) |
213 |
110
|
nnred |
|- ( ph -> ( exp ` ( theta ` M ) ) e. RR ) |
214 |
114
|
nngt0d |
|- ( ph -> 0 < ( exp ` ( theta ` K ) ) ) |
215 |
110
|
nngt0d |
|- ( ph -> 0 < ( exp ` ( theta ` M ) ) ) |
216 |
212 213 214 215
|
divgt0d |
|- ( ph -> 0 < ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) |
217 |
|
elnnz |
|- ( ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) e. NN <-> ( ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) e. ZZ /\ 0 < ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) ) |
218 |
118 216 217
|
sylanbrc |
|- ( ph -> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) e. NN ) |
219 |
|
dvdsle |
|- ( ( ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) e. ZZ /\ ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) e. NN ) -> ( ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) || ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) -> ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) <_ ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) ) |
220 |
101 218 219
|
syl2anc |
|- ( ph -> ( ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) || ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) -> ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) <_ ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) ) |
221 |
211 220
|
mpd |
|- ( ph -> ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) <_ ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) ) |
222 |
|
nndivre |
|- ( ( ( exp ` ( theta ` K ) ) e. RR /\ 4 e. NN ) -> ( ( exp ` ( theta ` K ) ) / 4 ) e. RR ) |
223 |
212 6 222
|
sylancl |
|- ( ph -> ( ( exp ` ( theta ` K ) ) / 4 ) e. RR ) |
224 |
|
4re |
|- 4 e. RR |
225 |
224
|
a1i |
|- ( ph -> 4 e. RR ) |
226 |
|
6re |
|- 6 e. RR |
227 |
226
|
a1i |
|- ( ph -> 6 e. RR ) |
228 |
|
4lt6 |
|- 4 < 6 |
229 |
228
|
a1i |
|- ( ph -> 4 < 6 ) |
230 |
|
cht3 |
|- ( theta ` 3 ) = ( log ` 6 ) |
231 |
230
|
fveq2i |
|- ( exp ` ( theta ` 3 ) ) = ( exp ` ( log ` 6 ) ) |
232 |
|
6pos |
|- 0 < 6 |
233 |
226 232
|
elrpii |
|- 6 e. RR+ |
234 |
|
reeflog |
|- ( 6 e. RR+ -> ( exp ` ( log ` 6 ) ) = 6 ) |
235 |
233 234
|
ax-mp |
|- ( exp ` ( log ` 6 ) ) = 6 |
236 |
231 235
|
eqtri |
|- ( exp ` ( theta ` 3 ) ) = 6 |
237 |
|
3re |
|- 3 e. RR |
238 |
237
|
a1i |
|- ( ph -> 3 e. RR ) |
239 |
|
eluzle |
|- ( M e. ( ZZ>= ` 3 ) -> 3 <_ M ) |
240 |
67 239
|
syl |
|- ( ph -> 3 <_ M ) |
241 |
|
chtwordi |
|- ( ( 3 e. RR /\ M e. RR /\ 3 <_ M ) -> ( theta ` 3 ) <_ ( theta ` M ) ) |
242 |
238 103 240 241
|
syl3anc |
|- ( ph -> ( theta ` 3 ) <_ ( theta ` M ) ) |
243 |
|
chtcl |
|- ( 3 e. RR -> ( theta ` 3 ) e. RR ) |
244 |
237 243
|
ax-mp |
|- ( theta ` 3 ) e. RR |
245 |
|
chtcl |
|- ( M e. RR -> ( theta ` M ) e. RR ) |
246 |
103 245
|
syl |
|- ( ph -> ( theta ` M ) e. RR ) |
247 |
|
efle |
|- ( ( ( theta ` 3 ) e. RR /\ ( theta ` M ) e. RR ) -> ( ( theta ` 3 ) <_ ( theta ` M ) <-> ( exp ` ( theta ` 3 ) ) <_ ( exp ` ( theta ` M ) ) ) ) |
248 |
244 246 247
|
sylancr |
|- ( ph -> ( ( theta ` 3 ) <_ ( theta ` M ) <-> ( exp ` ( theta ` 3 ) ) <_ ( exp ` ( theta ` M ) ) ) ) |
249 |
242 248
|
mpbid |
|- ( ph -> ( exp ` ( theta ` 3 ) ) <_ ( exp ` ( theta ` M ) ) ) |
250 |
236 249
|
eqbrtrrid |
|- ( ph -> 6 <_ ( exp ` ( theta ` M ) ) ) |
251 |
225 227 213 229 250
|
ltletrd |
|- ( ph -> 4 < ( exp ` ( theta ` M ) ) ) |
252 |
|
4pos |
|- 0 < 4 |
253 |
252
|
a1i |
|- ( ph -> 0 < 4 ) |
254 |
|
ltdiv2 |
|- ( ( ( 4 e. RR /\ 0 < 4 ) /\ ( ( exp ` ( theta ` M ) ) e. RR /\ 0 < ( exp ` ( theta ` M ) ) ) /\ ( ( exp ` ( theta ` K ) ) e. RR /\ 0 < ( exp ` ( theta ` K ) ) ) ) -> ( 4 < ( exp ` ( theta ` M ) ) <-> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) < ( ( exp ` ( theta ` K ) ) / 4 ) ) ) |
255 |
225 253 213 215 212 214 254
|
syl222anc |
|- ( ph -> ( 4 < ( exp ` ( theta ` M ) ) <-> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) < ( ( exp ` ( theta ` K ) ) / 4 ) ) ) |
256 |
251 255
|
mpbid |
|- ( ph -> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) < ( ( exp ` ( theta ` K ) ) / 4 ) ) |
257 |
30
|
a1i |
|- ( ph -> 2 e. RR ) |
258 |
|
2lt3 |
|- 2 < 3 |
259 |
258
|
a1i |
|- ( ph -> 2 < 3 ) |
260 |
238 103 104 240 106
|
letrd |
|- ( ph -> 3 <_ K ) |
261 |
257 238 104 259 260
|
ltletrd |
|- ( ph -> 2 < K ) |
262 |
|
chtub |
|- ( ( K e. RR /\ 2 < K ) -> ( theta ` K ) < ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) ) |
263 |
104 261 262
|
syl2anc |
|- ( ph -> ( theta ` K ) < ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) ) |
264 |
|
chtcl |
|- ( K e. RR -> ( theta ` K ) e. RR ) |
265 |
104 264
|
syl |
|- ( ph -> ( theta ` K ) e. RR ) |
266 |
|
relogcl |
|- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
267 |
35 266
|
ax-mp |
|- ( log ` 2 ) e. RR |
268 |
|
3z |
|- 3 e. ZZ |
269 |
|
zsubcl |
|- ( ( ( 2 x. K ) e. ZZ /\ 3 e. ZZ ) -> ( ( 2 x. K ) - 3 ) e. ZZ ) |
270 |
78 268 269
|
sylancl |
|- ( ph -> ( ( 2 x. K ) - 3 ) e. ZZ ) |
271 |
270
|
zred |
|- ( ph -> ( ( 2 x. K ) - 3 ) e. RR ) |
272 |
|
remulcl |
|- ( ( ( log ` 2 ) e. RR /\ ( ( 2 x. K ) - 3 ) e. RR ) -> ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) e. RR ) |
273 |
267 271 272
|
sylancr |
|- ( ph -> ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) e. RR ) |
274 |
|
eflt |
|- ( ( ( theta ` K ) e. RR /\ ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) e. RR ) -> ( ( theta ` K ) < ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) <-> ( exp ` ( theta ` K ) ) < ( exp ` ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) ) ) ) |
275 |
265 273 274
|
syl2anc |
|- ( ph -> ( ( theta ` K ) < ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) <-> ( exp ` ( theta ` K ) ) < ( exp ` ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) ) ) ) |
276 |
263 275
|
mpbid |
|- ( ph -> ( exp ` ( theta ` K ) ) < ( exp ` ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) ) ) |
277 |
|
reexplog |
|- ( ( 2 e. RR+ /\ ( ( 2 x. K ) - 3 ) e. ZZ ) -> ( 2 ^ ( ( 2 x. K ) - 3 ) ) = ( exp ` ( ( ( 2 x. K ) - 3 ) x. ( log ` 2 ) ) ) ) |
278 |
35 270 277
|
sylancr |
|- ( ph -> ( 2 ^ ( ( 2 x. K ) - 3 ) ) = ( exp ` ( ( ( 2 x. K ) - 3 ) x. ( log ` 2 ) ) ) ) |
279 |
270
|
zcnd |
|- ( ph -> ( ( 2 x. K ) - 3 ) e. CC ) |
280 |
267
|
recni |
|- ( log ` 2 ) e. CC |
281 |
|
mulcom |
|- ( ( ( ( 2 x. K ) - 3 ) e. CC /\ ( log ` 2 ) e. CC ) -> ( ( ( 2 x. K ) - 3 ) x. ( log ` 2 ) ) = ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) ) |
282 |
279 280 281
|
sylancl |
|- ( ph -> ( ( ( 2 x. K ) - 3 ) x. ( log ` 2 ) ) = ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) ) |
283 |
282
|
fveq2d |
|- ( ph -> ( exp ` ( ( ( 2 x. K ) - 3 ) x. ( log ` 2 ) ) ) = ( exp ` ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) ) ) |
284 |
278 283
|
eqtrd |
|- ( ph -> ( 2 ^ ( ( 2 x. K ) - 3 ) ) = ( exp ` ( ( log ` 2 ) x. ( ( 2 x. K ) - 3 ) ) ) ) |
285 |
276 284
|
breqtrrd |
|- ( ph -> ( exp ` ( theta ` K ) ) < ( 2 ^ ( ( 2 x. K ) - 3 ) ) ) |
286 |
|
3p2e5 |
|- ( 3 + 2 ) = 5 |
287 |
286
|
oveq1i |
|- ( ( 3 + 2 ) - 2 ) = ( 5 - 2 ) |
288 |
|
3cn |
|- 3 e. CC |
289 |
|
2cn |
|- 2 e. CC |
290 |
288 289
|
pncan3oi |
|- ( ( 3 + 2 ) - 2 ) = 3 |
291 |
287 290
|
eqtr3i |
|- ( 5 - 2 ) = 3 |
292 |
291
|
oveq2i |
|- ( ( 2 x. K ) - ( 5 - 2 ) ) = ( ( 2 x. K ) - 3 ) |
293 |
78
|
zcnd |
|- ( ph -> ( 2 x. K ) e. CC ) |
294 |
|
5cn |
|- 5 e. CC |
295 |
|
subsub |
|- ( ( ( 2 x. K ) e. CC /\ 5 e. CC /\ 2 e. CC ) -> ( ( 2 x. K ) - ( 5 - 2 ) ) = ( ( ( 2 x. K ) - 5 ) + 2 ) ) |
296 |
294 289 295
|
mp3an23 |
|- ( ( 2 x. K ) e. CC -> ( ( 2 x. K ) - ( 5 - 2 ) ) = ( ( ( 2 x. K ) - 5 ) + 2 ) ) |
297 |
293 296
|
syl |
|- ( ph -> ( ( 2 x. K ) - ( 5 - 2 ) ) = ( ( ( 2 x. K ) - 5 ) + 2 ) ) |
298 |
292 297
|
eqtr3id |
|- ( ph -> ( ( 2 x. K ) - 3 ) = ( ( ( 2 x. K ) - 5 ) + 2 ) ) |
299 |
298
|
oveq2d |
|- ( ph -> ( 2 ^c ( ( 2 x. K ) - 3 ) ) = ( 2 ^c ( ( ( 2 x. K ) - 5 ) + 2 ) ) ) |
300 |
|
2ne0 |
|- 2 =/= 0 |
301 |
|
cxpexpz |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ ( ( 2 x. K ) - 3 ) e. ZZ ) -> ( 2 ^c ( ( 2 x. K ) - 3 ) ) = ( 2 ^ ( ( 2 x. K ) - 3 ) ) ) |
302 |
289 300 270 301
|
mp3an12i |
|- ( ph -> ( 2 ^c ( ( 2 x. K ) - 3 ) ) = ( 2 ^ ( ( 2 x. K ) - 3 ) ) ) |
303 |
81
|
zcnd |
|- ( ph -> ( ( 2 x. K ) - 5 ) e. CC ) |
304 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
305 |
|
cxpadd |
|- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( ( 2 x. K ) - 5 ) e. CC /\ 2 e. CC ) -> ( 2 ^c ( ( ( 2 x. K ) - 5 ) + 2 ) ) = ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. ( 2 ^c 2 ) ) ) |
306 |
304 289 305
|
mp3an13 |
|- ( ( ( 2 x. K ) - 5 ) e. CC -> ( 2 ^c ( ( ( 2 x. K ) - 5 ) + 2 ) ) = ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. ( 2 ^c 2 ) ) ) |
307 |
303 306
|
syl |
|- ( ph -> ( 2 ^c ( ( ( 2 x. K ) - 5 ) + 2 ) ) = ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. ( 2 ^c 2 ) ) ) |
308 |
299 302 307
|
3eqtr3d |
|- ( ph -> ( 2 ^ ( ( 2 x. K ) - 3 ) ) = ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. ( 2 ^c 2 ) ) ) |
309 |
|
2nn0 |
|- 2 e. NN0 |
310 |
|
cxpexp |
|- ( ( 2 e. CC /\ 2 e. NN0 ) -> ( 2 ^c 2 ) = ( 2 ^ 2 ) ) |
311 |
289 309 310
|
mp2an |
|- ( 2 ^c 2 ) = ( 2 ^ 2 ) |
312 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
313 |
311 312
|
eqtri |
|- ( 2 ^c 2 ) = 4 |
314 |
313
|
oveq2i |
|- ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. ( 2 ^c 2 ) ) = ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. 4 ) |
315 |
308 314
|
eqtrdi |
|- ( ph -> ( 2 ^ ( ( 2 x. K ) - 3 ) ) = ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. 4 ) ) |
316 |
285 315
|
breqtrd |
|- ( ph -> ( exp ` ( theta ` K ) ) < ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. 4 ) ) |
317 |
224 252
|
pm3.2i |
|- ( 4 e. RR /\ 0 < 4 ) |
318 |
317
|
a1i |
|- ( ph -> ( 4 e. RR /\ 0 < 4 ) ) |
319 |
|
ltdivmul2 |
|- ( ( ( exp ` ( theta ` K ) ) e. RR /\ ( 2 ^c ( ( 2 x. K ) - 5 ) ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( ( exp ` ( theta ` K ) ) / 4 ) < ( 2 ^c ( ( 2 x. K ) - 5 ) ) <-> ( exp ` ( theta ` K ) ) < ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. 4 ) ) ) |
320 |
212 85 318 319
|
syl3anc |
|- ( ph -> ( ( ( exp ` ( theta ` K ) ) / 4 ) < ( 2 ^c ( ( 2 x. K ) - 5 ) ) <-> ( exp ` ( theta ` K ) ) < ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) x. 4 ) ) ) |
321 |
316 320
|
mpbird |
|- ( ph -> ( ( exp ` ( theta ` K ) ) / 4 ) < ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) |
322 |
119 223 85 256 321
|
lttrd |
|- ( ph -> ( ( exp ` ( theta ` K ) ) / ( exp ` ( theta ` M ) ) ) < ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) |
323 |
102 119 85 221 322
|
lelttrd |
|- ( ph -> ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) < ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) |
324 |
97
|
nnred |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) e. RR ) |
325 |
|
nnre |
|- ( ( seq 1 ( x. , F ) ` M ) e. NN -> ( seq 1 ( x. , F ) ` M ) e. RR ) |
326 |
|
nngt0 |
|- ( ( seq 1 ( x. , F ) ` M ) e. NN -> 0 < ( seq 1 ( x. , F ) ` M ) ) |
327 |
325 326
|
jca |
|- ( ( seq 1 ( x. , F ) ` M ) e. NN -> ( ( seq 1 ( x. , F ) ` M ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` M ) ) ) |
328 |
70 327
|
syl |
|- ( ph -> ( ( seq 1 ( x. , F ) ` M ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` M ) ) ) |
329 |
|
ltdivmul |
|- ( ( ( seq 1 ( x. , F ) ` K ) e. RR /\ ( 2 ^c ( ( 2 x. K ) - 5 ) ) e. RR /\ ( ( seq 1 ( x. , F ) ` M ) e. RR /\ 0 < ( seq 1 ( x. , F ) ` M ) ) ) -> ( ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) < ( 2 ^c ( ( 2 x. K ) - 5 ) ) <-> ( seq 1 ( x. , F ) ` K ) < ( ( seq 1 ( x. , F ) ` M ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) ) ) |
330 |
324 85 328 329
|
syl3anc |
|- ( ph -> ( ( ( seq 1 ( x. , F ) ` K ) / ( seq 1 ( x. , F ) ` M ) ) < ( 2 ^c ( ( 2 x. K ) - 5 ) ) <-> ( seq 1 ( x. , F ) ` K ) < ( ( seq 1 ( x. , F ) ` M ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) ) ) |
331 |
323 330
|
mpbid |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) < ( ( seq 1 ( x. , F ) ` M ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) ) |
332 |
87 331
|
eqbrtrrd |
|- ( ph -> ( ( 2 x. N ) _C N ) < ( ( seq 1 ( x. , F ) ` M ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) ) |
333 |
34 85
|
remulcld |
|- ( ph -> ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) e. RR ) |
334 |
1 2 3 4 5
|
bposlem5 |
|- ( ph -> ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) ) |
335 |
71 34 84
|
lemul1d |
|- ( ph -> ( ( seq 1 ( x. , F ) ` M ) <_ ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) <-> ( ( seq 1 ( x. , F ) ` M ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) <_ ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) ) ) |
336 |
334 335
|
mpbid |
|- ( ph -> ( ( seq 1 ( x. , F ) ` M ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) <_ ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) ) |
337 |
78
|
zred |
|- ( ph -> ( 2 x. K ) e. RR ) |
338 |
41
|
a1i |
|- ( ph -> 5 e. RR ) |
339 |
|
flle |
|- ( ( ( 2 x. N ) / 3 ) e. RR -> ( |_ ` ( ( 2 x. N ) / 3 ) ) <_ ( ( 2 x. N ) / 3 ) ) |
340 |
74 339
|
syl |
|- ( ph -> ( |_ ` ( ( 2 x. N ) / 3 ) ) <_ ( ( 2 x. N ) / 3 ) ) |
341 |
4 340
|
eqbrtrid |
|- ( ph -> K <_ ( ( 2 x. N ) / 3 ) ) |
342 |
|
2pos |
|- 0 < 2 |
343 |
30 342
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
344 |
343
|
a1i |
|- ( ph -> ( 2 e. RR /\ 0 < 2 ) ) |
345 |
|
lemul2 |
|- ( ( K e. RR /\ ( ( 2 x. N ) / 3 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( K <_ ( ( 2 x. N ) / 3 ) <-> ( 2 x. K ) <_ ( 2 x. ( ( 2 x. N ) / 3 ) ) ) ) |
346 |
104 74 344 345
|
syl3anc |
|- ( ph -> ( K <_ ( ( 2 x. N ) / 3 ) <-> ( 2 x. K ) <_ ( 2 x. ( ( 2 x. N ) / 3 ) ) ) ) |
347 |
341 346
|
mpbid |
|- ( ph -> ( 2 x. K ) <_ ( 2 x. ( ( 2 x. N ) / 3 ) ) ) |
348 |
22
|
nncnd |
|- ( ph -> ( 2 x. N ) e. CC ) |
349 |
|
3ne0 |
|- 3 =/= 0 |
350 |
288 349
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
351 |
|
divass |
|- ( ( 2 e. CC /\ ( 2 x. N ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 2 x. ( 2 x. N ) ) / 3 ) = ( 2 x. ( ( 2 x. N ) / 3 ) ) ) |
352 |
289 350 351
|
mp3an13 |
|- ( ( 2 x. N ) e. CC -> ( ( 2 x. ( 2 x. N ) ) / 3 ) = ( 2 x. ( ( 2 x. N ) / 3 ) ) ) |
353 |
348 352
|
syl |
|- ( ph -> ( ( 2 x. ( 2 x. N ) ) / 3 ) = ( 2 x. ( ( 2 x. N ) / 3 ) ) ) |
354 |
9
|
nncnd |
|- ( ph -> N e. CC ) |
355 |
|
mulass |
|- ( ( 2 e. CC /\ 2 e. CC /\ N e. CC ) -> ( ( 2 x. 2 ) x. N ) = ( 2 x. ( 2 x. N ) ) ) |
356 |
289 289 354 355
|
mp3an12i |
|- ( ph -> ( ( 2 x. 2 ) x. N ) = ( 2 x. ( 2 x. N ) ) ) |
357 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
358 |
357
|
oveq1i |
|- ( ( 2 x. 2 ) x. N ) = ( 4 x. N ) |
359 |
356 358
|
eqtr3di |
|- ( ph -> ( 2 x. ( 2 x. N ) ) = ( 4 x. N ) ) |
360 |
359
|
oveq1d |
|- ( ph -> ( ( 2 x. ( 2 x. N ) ) / 3 ) = ( ( 4 x. N ) / 3 ) ) |
361 |
353 360
|
eqtr3d |
|- ( ph -> ( 2 x. ( ( 2 x. N ) / 3 ) ) = ( ( 4 x. N ) / 3 ) ) |
362 |
347 361
|
breqtrd |
|- ( ph -> ( 2 x. K ) <_ ( ( 4 x. N ) / 3 ) ) |
363 |
337 40 338 362
|
lesub1dd |
|- ( ph -> ( ( 2 x. K ) - 5 ) <_ ( ( ( 4 x. N ) / 3 ) - 5 ) ) |
364 |
|
1lt2 |
|- 1 < 2 |
365 |
364
|
a1i |
|- ( ph -> 1 < 2 ) |
366 |
257 365 82 43
|
cxpled |
|- ( ph -> ( ( ( 2 x. K ) - 5 ) <_ ( ( ( 4 x. N ) / 3 ) - 5 ) <-> ( 2 ^c ( ( 2 x. K ) - 5 ) ) <_ ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) ) |
367 |
363 366
|
mpbid |
|- ( ph -> ( 2 ^c ( ( 2 x. K ) - 5 ) ) <_ ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) |
368 |
85 46 33
|
lemul2d |
|- ( ph -> ( ( 2 ^c ( ( 2 x. K ) - 5 ) ) <_ ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) <-> ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) <_ ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) ) ) |
369 |
367 368
|
mpbid |
|- ( ph -> ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) <_ ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) ) |
370 |
86 333 47 336 369
|
letrd |
|- ( ph -> ( ( seq 1 ( x. , F ) ` M ) x. ( 2 ^c ( ( 2 x. K ) - 5 ) ) ) <_ ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) ) |
371 |
19 86 47 332 370
|
ltletrd |
|- ( ph -> ( ( 2 x. N ) _C N ) < ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) ) |
372 |
14 19 47 58 371
|
lttrd |
|- ( ph -> ( ( 4 ^ N ) / N ) < ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) ) |