| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bposlem7.1 | 
							 |-  F = ( n e. NN |-> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bposlem7.2 | 
							 |-  G = ( x e. RR+ |-> ( ( log ` x ) / x ) )  | 
						
						
							| 3 | 
							
								
							 | 
							6nn0 | 
							 |-  6 e. NN0  | 
						
						
							| 4 | 
							
								
							 | 
							4nn | 
							 |-  4 e. NN  | 
						
						
							| 5 | 
							
								3 4
							 | 
							decnncl | 
							 |-  ; 6 4 e. NN  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = ; 6 4 -> ( sqrt ` n ) = ( sqrt ` ; 6 4 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							8cn | 
							 |-  8 e. CC  | 
						
						
							| 8 | 
							
								7
							 | 
							sqvali | 
							 |-  ( 8 ^ 2 ) = ( 8 x. 8 )  | 
						
						
							| 9 | 
							
								
							 | 
							8t8e64 | 
							 |-  ( 8 x. 8 ) = ; 6 4  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtri | 
							 |-  ( 8 ^ 2 ) = ; 6 4  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq2i | 
							 |-  ( sqrt ` ( 8 ^ 2 ) ) = ( sqrt ` ; 6 4 )  | 
						
						
							| 12 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 13 | 
							
								
							 | 
							8re | 
							 |-  8 e. RR  | 
						
						
							| 14 | 
							
								
							 | 
							8pos | 
							 |-  0 < 8  | 
						
						
							| 15 | 
							
								12 13 14
							 | 
							ltleii | 
							 |-  0 <_ 8  | 
						
						
							| 16 | 
							
								13
							 | 
							sqrtsqi | 
							 |-  ( 0 <_ 8 -> ( sqrt ` ( 8 ^ 2 ) ) = 8 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							ax-mp | 
							 |-  ( sqrt ` ( 8 ^ 2 ) ) = 8  | 
						
						
							| 18 | 
							
								11 17
							 | 
							eqtr3i | 
							 |-  ( sqrt ` ; 6 4 ) = 8  | 
						
						
							| 19 | 
							
								6 18
							 | 
							eqtrdi | 
							 |-  ( n = ; 6 4 -> ( sqrt ` n ) = 8 )  | 
						
						
							| 20 | 
							
								19
							 | 
							fveq2d | 
							 |-  ( n = ; 6 4 -> ( G ` ( sqrt ` n ) ) = ( G ` 8 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							8nn | 
							 |-  8 e. NN  | 
						
						
							| 22 | 
							
								
							 | 
							nnrp | 
							 |-  ( 8 e. NN -> 8 e. RR+ )  | 
						
						
							| 23 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = 8 -> ( log ` x ) = ( log ` 8 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							cu2 | 
							 |-  ( 2 ^ 3 ) = 8  | 
						
						
							| 25 | 
							
								24
							 | 
							fveq2i | 
							 |-  ( log ` ( 2 ^ 3 ) ) = ( log ` 8 )  | 
						
						
							| 26 | 
							
								
							 | 
							2rp | 
							 |-  2 e. RR+  | 
						
						
							| 27 | 
							
								
							 | 
							3z | 
							 |-  3 e. ZZ  | 
						
						
							| 28 | 
							
								
							 | 
							relogexp | 
							 |-  ( ( 2 e. RR+ /\ 3 e. ZZ ) -> ( log ` ( 2 ^ 3 ) ) = ( 3 x. ( log ` 2 ) ) )  | 
						
						
							| 29 | 
							
								26 27 28
							 | 
							mp2an | 
							 |-  ( log ` ( 2 ^ 3 ) ) = ( 3 x. ( log ` 2 ) )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							eqtr3i | 
							 |-  ( log ` 8 ) = ( 3 x. ( log ` 2 ) )  | 
						
						
							| 31 | 
							
								23 30
							 | 
							eqtrdi | 
							 |-  ( x = 8 -> ( log ` x ) = ( 3 x. ( log ` 2 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							id | 
							 |-  ( x = 8 -> x = 8 )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							oveq12d | 
							 |-  ( x = 8 -> ( ( log ` x ) / x ) = ( ( 3 x. ( log ` 2 ) ) / 8 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							3cn | 
							 |-  3 e. CC  | 
						
						
							| 35 | 
							
								
							 | 
							2nn | 
							 |-  2 e. NN  | 
						
						
							| 36 | 
							
								
							 | 
							nnrp | 
							 |-  ( 2 e. NN -> 2 e. RR+ )  | 
						
						
							| 37 | 
							
								
							 | 
							relogcl | 
							 |-  ( 2 e. RR+ -> ( log ` 2 ) e. RR )  | 
						
						
							| 38 | 
							
								35 36 37
							 | 
							mp2b | 
							 |-  ( log ` 2 ) e. RR  | 
						
						
							| 39 | 
							
								38
							 | 
							recni | 
							 |-  ( log ` 2 ) e. CC  | 
						
						
							| 40 | 
							
								21
							 | 
							nnne0i | 
							 |-  8 =/= 0  | 
						
						
							| 41 | 
							
								34 39 7 40
							 | 
							div23i | 
							 |-  ( ( 3 x. ( log ` 2 ) ) / 8 ) = ( ( 3 / 8 ) x. ( log ` 2 ) )  | 
						
						
							| 42 | 
							
								33 41
							 | 
							eqtrdi | 
							 |-  ( x = 8 -> ( ( log ` x ) / x ) = ( ( 3 / 8 ) x. ( log ` 2 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							ovex | 
							 |-  ( ( 3 / 8 ) x. ( log ` 2 ) ) e. _V  | 
						
						
							| 44 | 
							
								42 2 43
							 | 
							fvmpt | 
							 |-  ( 8 e. RR+ -> ( G ` 8 ) = ( ( 3 / 8 ) x. ( log ` 2 ) ) )  | 
						
						
							| 45 | 
							
								21 22 44
							 | 
							mp2b | 
							 |-  ( G ` 8 ) = ( ( 3 / 8 ) x. ( log ` 2 ) )  | 
						
						
							| 46 | 
							
								20 45
							 | 
							eqtrdi | 
							 |-  ( n = ; 6 4 -> ( G ` ( sqrt ` n ) ) = ( ( 3 / 8 ) x. ( log ` 2 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							oveq2d | 
							 |-  ( n = ; 6 4 -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) = ( ( sqrt ` 2 ) x. ( ( 3 / 8 ) x. ( log ` 2 ) ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							sqrt2re | 
							 |-  ( sqrt ` 2 ) e. RR  | 
						
						
							| 49 | 
							
								48
							 | 
							recni | 
							 |-  ( sqrt ` 2 ) e. CC  | 
						
						
							| 50 | 
							
								34 7 40
							 | 
							divcli | 
							 |-  ( 3 / 8 ) e. CC  | 
						
						
							| 51 | 
							
								49 50 39
							 | 
							mulassi | 
							 |-  ( ( ( sqrt ` 2 ) x. ( 3 / 8 ) ) x. ( log ` 2 ) ) = ( ( sqrt ` 2 ) x. ( ( 3 / 8 ) x. ( log ` 2 ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							4cn | 
							 |-  4 e. CC  | 
						
						
							| 53 | 
							
								49 52 49
							 | 
							mul12i | 
							 |-  ( ( sqrt ` 2 ) x. ( 4 x. ( sqrt ` 2 ) ) ) = ( 4 x. ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) )  | 
						
						
							| 54 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 55 | 
							
								
							 | 
							0le2 | 
							 |-  0 <_ 2  | 
						
						
							| 56 | 
							
								
							 | 
							remsqsqrt | 
							 |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) = 2 )  | 
						
						
							| 57 | 
							
								54 55 56
							 | 
							mp2an | 
							 |-  ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) = 2  | 
						
						
							| 58 | 
							
								57
							 | 
							oveq2i | 
							 |-  ( 4 x. ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) ) = ( 4 x. 2 )  | 
						
						
							| 59 | 
							
								
							 | 
							4t2e8 | 
							 |-  ( 4 x. 2 ) = 8  | 
						
						
							| 60 | 
							
								53 58 59
							 | 
							3eqtri | 
							 |-  ( ( sqrt ` 2 ) x. ( 4 x. ( sqrt ` 2 ) ) ) = 8  | 
						
						
							| 61 | 
							
								60
							 | 
							oveq2i | 
							 |-  ( ( ( sqrt ` 2 ) x. 3 ) / ( ( sqrt ` 2 ) x. ( 4 x. ( sqrt ` 2 ) ) ) ) = ( ( ( sqrt ` 2 ) x. 3 ) / 8 )  | 
						
						
							| 62 | 
							
								52 49
							 | 
							mulcli | 
							 |-  ( 4 x. ( sqrt ` 2 ) ) e. CC  | 
						
						
							| 63 | 
							
								
							 | 
							nnrp | 
							 |-  ( 4 e. NN -> 4 e. RR+ )  | 
						
						
							| 64 | 
							
								4 63
							 | 
							ax-mp | 
							 |-  4 e. RR+  | 
						
						
							| 65 | 
							
								
							 | 
							rpsqrtcl | 
							 |-  ( 2 e. RR+ -> ( sqrt ` 2 ) e. RR+ )  | 
						
						
							| 66 | 
							
								35 36 65
							 | 
							mp2b | 
							 |-  ( sqrt ` 2 ) e. RR+  | 
						
						
							| 67 | 
							
								
							 | 
							rpmulcl | 
							 |-  ( ( 4 e. RR+ /\ ( sqrt ` 2 ) e. RR+ ) -> ( 4 x. ( sqrt ` 2 ) ) e. RR+ )  | 
						
						
							| 68 | 
							
								64 66 67
							 | 
							mp2an | 
							 |-  ( 4 x. ( sqrt ` 2 ) ) e. RR+  | 
						
						
							| 69 | 
							
								
							 | 
							rpne0 | 
							 |-  ( ( 4 x. ( sqrt ` 2 ) ) e. RR+ -> ( 4 x. ( sqrt ` 2 ) ) =/= 0 )  | 
						
						
							| 70 | 
							
								68 69
							 | 
							ax-mp | 
							 |-  ( 4 x. ( sqrt ` 2 ) ) =/= 0  | 
						
						
							| 71 | 
							
								
							 | 
							rpne0 | 
							 |-  ( ( sqrt ` 2 ) e. RR+ -> ( sqrt ` 2 ) =/= 0 )  | 
						
						
							| 72 | 
							
								26 65 71
							 | 
							mp2b | 
							 |-  ( sqrt ` 2 ) =/= 0  | 
						
						
							| 73 | 
							
								
							 | 
							divcan5 | 
							 |-  ( ( 3 e. CC /\ ( ( 4 x. ( sqrt ` 2 ) ) e. CC /\ ( 4 x. ( sqrt ` 2 ) ) =/= 0 ) /\ ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) ) -> ( ( ( sqrt ` 2 ) x. 3 ) / ( ( sqrt ` 2 ) x. ( 4 x. ( sqrt ` 2 ) ) ) ) = ( 3 / ( 4 x. ( sqrt ` 2 ) ) ) )  | 
						
						
							| 74 | 
							
								34 73
							 | 
							mp3an1 | 
							 |-  ( ( ( ( 4 x. ( sqrt ` 2 ) ) e. CC /\ ( 4 x. ( sqrt ` 2 ) ) =/= 0 ) /\ ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) ) -> ( ( ( sqrt ` 2 ) x. 3 ) / ( ( sqrt ` 2 ) x. ( 4 x. ( sqrt ` 2 ) ) ) ) = ( 3 / ( 4 x. ( sqrt ` 2 ) ) ) )  | 
						
						
							| 75 | 
							
								62 70 49 72 74
							 | 
							mp4an | 
							 |-  ( ( ( sqrt ` 2 ) x. 3 ) / ( ( sqrt ` 2 ) x. ( 4 x. ( sqrt ` 2 ) ) ) ) = ( 3 / ( 4 x. ( sqrt ` 2 ) ) )  | 
						
						
							| 76 | 
							
								
							 | 
							4ne0 | 
							 |-  4 =/= 0  | 
						
						
							| 77 | 
							
								
							 | 
							divdiv1 | 
							 |-  ( ( 3 e. CC /\ ( 4 e. CC /\ 4 =/= 0 ) /\ ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) ) -> ( ( 3 / 4 ) / ( sqrt ` 2 ) ) = ( 3 / ( 4 x. ( sqrt ` 2 ) ) ) )  | 
						
						
							| 78 | 
							
								34 77
							 | 
							mp3an1 | 
							 |-  ( ( ( 4 e. CC /\ 4 =/= 0 ) /\ ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) ) -> ( ( 3 / 4 ) / ( sqrt ` 2 ) ) = ( 3 / ( 4 x. ( sqrt ` 2 ) ) ) )  | 
						
						
							| 79 | 
							
								52 76 49 72 78
							 | 
							mp4an | 
							 |-  ( ( 3 / 4 ) / ( sqrt ` 2 ) ) = ( 3 / ( 4 x. ( sqrt ` 2 ) ) )  | 
						
						
							| 80 | 
							
								75 79
							 | 
							eqtr4i | 
							 |-  ( ( ( sqrt ` 2 ) x. 3 ) / ( ( sqrt ` 2 ) x. ( 4 x. ( sqrt ` 2 ) ) ) ) = ( ( 3 / 4 ) / ( sqrt ` 2 ) )  | 
						
						
							| 81 | 
							
								49 34 7 40
							 | 
							divassi | 
							 |-  ( ( ( sqrt ` 2 ) x. 3 ) / 8 ) = ( ( sqrt ` 2 ) x. ( 3 / 8 ) )  | 
						
						
							| 82 | 
							
								61 80 81
							 | 
							3eqtr3ri | 
							 |-  ( ( sqrt ` 2 ) x. ( 3 / 8 ) ) = ( ( 3 / 4 ) / ( sqrt ` 2 ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							oveq1i | 
							 |-  ( ( ( sqrt ` 2 ) x. ( 3 / 8 ) ) x. ( log ` 2 ) ) = ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) )  | 
						
						
							| 84 | 
							
								51 83
							 | 
							eqtr3i | 
							 |-  ( ( sqrt ` 2 ) x. ( ( 3 / 8 ) x. ( log ` 2 ) ) ) = ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) )  | 
						
						
							| 85 | 
							
								47 84
							 | 
							eqtrdi | 
							 |-  ( n = ; 6 4 -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) = ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = ; 6 4 -> ( n / 2 ) = ( ; 6 4 / 2 ) )  | 
						
						
							| 87 | 
							
								
							 | 
							df-6 | 
							 |-  6 = ( 5 + 1 )  | 
						
						
							| 88 | 
							
								87
							 | 
							oveq2i | 
							 |-  ( 2 ^ 6 ) = ( 2 ^ ( 5 + 1 ) )  | 
						
						
							| 89 | 
							
								
							 | 
							2exp6 | 
							 |-  ( 2 ^ 6 ) = ; 6 4  | 
						
						
							| 90 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 91 | 
							
								
							 | 
							5nn0 | 
							 |-  5 e. NN0  | 
						
						
							| 92 | 
							
								
							 | 
							expp1 | 
							 |-  ( ( 2 e. CC /\ 5 e. NN0 ) -> ( 2 ^ ( 5 + 1 ) ) = ( ( 2 ^ 5 ) x. 2 ) )  | 
						
						
							| 93 | 
							
								90 91 92
							 | 
							mp2an | 
							 |-  ( 2 ^ ( 5 + 1 ) ) = ( ( 2 ^ 5 ) x. 2 )  | 
						
						
							| 94 | 
							
								88 89 93
							 | 
							3eqtr3i | 
							 |-  ; 6 4 = ( ( 2 ^ 5 ) x. 2 )  | 
						
						
							| 95 | 
							
								94
							 | 
							oveq1i | 
							 |-  ( ; 6 4 / 2 ) = ( ( ( 2 ^ 5 ) x. 2 ) / 2 )  | 
						
						
							| 96 | 
							
								
							 | 
							nnexpcl | 
							 |-  ( ( 2 e. NN /\ 5 e. NN0 ) -> ( 2 ^ 5 ) e. NN )  | 
						
						
							| 97 | 
							
								35 91 96
							 | 
							mp2an | 
							 |-  ( 2 ^ 5 ) e. NN  | 
						
						
							| 98 | 
							
								97
							 | 
							nncni | 
							 |-  ( 2 ^ 5 ) e. CC  | 
						
						
							| 99 | 
							
								
							 | 
							2ne0 | 
							 |-  2 =/= 0  | 
						
						
							| 100 | 
							
								98 90 99
							 | 
							divcan4i | 
							 |-  ( ( ( 2 ^ 5 ) x. 2 ) / 2 ) = ( 2 ^ 5 )  | 
						
						
							| 101 | 
							
								95 100
							 | 
							eqtri | 
							 |-  ( ; 6 4 / 2 ) = ( 2 ^ 5 )  | 
						
						
							| 102 | 
							
								86 101
							 | 
							eqtrdi | 
							 |-  ( n = ; 6 4 -> ( n / 2 ) = ( 2 ^ 5 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							fveq2d | 
							 |-  ( n = ; 6 4 -> ( G ` ( n / 2 ) ) = ( G ` ( 2 ^ 5 ) ) )  | 
						
						
							| 104 | 
							
								
							 | 
							nnrp | 
							 |-  ( ( 2 ^ 5 ) e. NN -> ( 2 ^ 5 ) e. RR+ )  | 
						
						
							| 105 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = ( 2 ^ 5 ) -> ( log ` x ) = ( log ` ( 2 ^ 5 ) ) )  | 
						
						
							| 106 | 
							
								
							 | 
							5nn | 
							 |-  5 e. NN  | 
						
						
							| 107 | 
							
								106
							 | 
							nnzi | 
							 |-  5 e. ZZ  | 
						
						
							| 108 | 
							
								
							 | 
							relogexp | 
							 |-  ( ( 2 e. RR+ /\ 5 e. ZZ ) -> ( log ` ( 2 ^ 5 ) ) = ( 5 x. ( log ` 2 ) ) )  | 
						
						
							| 109 | 
							
								26 107 108
							 | 
							mp2an | 
							 |-  ( log ` ( 2 ^ 5 ) ) = ( 5 x. ( log ` 2 ) )  | 
						
						
							| 110 | 
							
								105 109
							 | 
							eqtrdi | 
							 |-  ( x = ( 2 ^ 5 ) -> ( log ` x ) = ( 5 x. ( log ` 2 ) ) )  | 
						
						
							| 111 | 
							
								
							 | 
							id | 
							 |-  ( x = ( 2 ^ 5 ) -> x = ( 2 ^ 5 ) )  | 
						
						
							| 112 | 
							
								110 111
							 | 
							oveq12d | 
							 |-  ( x = ( 2 ^ 5 ) -> ( ( log ` x ) / x ) = ( ( 5 x. ( log ` 2 ) ) / ( 2 ^ 5 ) ) )  | 
						
						
							| 113 | 
							
								
							 | 
							5cn | 
							 |-  5 e. CC  | 
						
						
							| 114 | 
							
								97
							 | 
							nnne0i | 
							 |-  ( 2 ^ 5 ) =/= 0  | 
						
						
							| 115 | 
							
								113 39 98 114
							 | 
							div23i | 
							 |-  ( ( 5 x. ( log ` 2 ) ) / ( 2 ^ 5 ) ) = ( ( 5 / ( 2 ^ 5 ) ) x. ( log ` 2 ) )  | 
						
						
							| 116 | 
							
								112 115
							 | 
							eqtrdi | 
							 |-  ( x = ( 2 ^ 5 ) -> ( ( log ` x ) / x ) = ( ( 5 / ( 2 ^ 5 ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 117 | 
							
								
							 | 
							ovex | 
							 |-  ( ( 5 / ( 2 ^ 5 ) ) x. ( log ` 2 ) ) e. _V  | 
						
						
							| 118 | 
							
								116 2 117
							 | 
							fvmpt | 
							 |-  ( ( 2 ^ 5 ) e. RR+ -> ( G ` ( 2 ^ 5 ) ) = ( ( 5 / ( 2 ^ 5 ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 119 | 
							
								97 104 118
							 | 
							mp2b | 
							 |-  ( G ` ( 2 ^ 5 ) ) = ( ( 5 / ( 2 ^ 5 ) ) x. ( log ` 2 ) )  | 
						
						
							| 120 | 
							
								103 119
							 | 
							eqtrdi | 
							 |-  ( n = ; 6 4 -> ( G ` ( n / 2 ) ) = ( ( 5 / ( 2 ^ 5 ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							oveq2d | 
							 |-  ( n = ; 6 4 -> ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) = ( ( 9 / 4 ) x. ( ( 5 / ( 2 ^ 5 ) ) x. ( log ` 2 ) ) ) )  | 
						
						
							| 122 | 
							
								
							 | 
							9cn | 
							 |-  9 e. CC  | 
						
						
							| 123 | 
							
								122 52 76
							 | 
							divcli | 
							 |-  ( 9 / 4 ) e. CC  | 
						
						
							| 124 | 
							
								113 98 114
							 | 
							divcli | 
							 |-  ( 5 / ( 2 ^ 5 ) ) e. CC  | 
						
						
							| 125 | 
							
								123 124 39
							 | 
							mulassi | 
							 |-  ( ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) x. ( log ` 2 ) ) = ( ( 9 / 4 ) x. ( ( 5 / ( 2 ^ 5 ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 126 | 
							
								121 125
							 | 
							eqtr4di | 
							 |-  ( n = ; 6 4 -> ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) = ( ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 127 | 
							
								85 126
							 | 
							oveq12d | 
							 |-  ( n = ; 6 4 -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) = ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) ) + ( ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) x. ( log ` 2 ) ) ) )  | 
						
						
							| 128 | 
							
								34 52 76
							 | 
							divcli | 
							 |-  ( 3 / 4 ) e. CC  | 
						
						
							| 129 | 
							
								128 49 72
							 | 
							divcli | 
							 |-  ( ( 3 / 4 ) / ( sqrt ` 2 ) ) e. CC  | 
						
						
							| 130 | 
							
								123 124
							 | 
							mulcli | 
							 |-  ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) e. CC  | 
						
						
							| 131 | 
							
								129 130 39
							 | 
							adddiri | 
							 |-  ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) x. ( log ` 2 ) ) = ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) ) + ( ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 132 | 
							
								127 131
							 | 
							eqtr4di | 
							 |-  ( n = ; 6 4 -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) = ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 133 | 
							
								
							 | 
							oveq2 | 
							 |-  ( n = ; 6 4 -> ( 2 x. n ) = ( 2 x. ; 6 4 ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							fveq2d | 
							 |-  ( n = ; 6 4 -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. ; 6 4 ) ) )  | 
						
						
							| 135 | 
							
								5
							 | 
							nnrei | 
							 |-  ; 6 4 e. RR  | 
						
						
							| 136 | 
							
								5
							 | 
							nngt0i | 
							 |-  0 < ; 6 4  | 
						
						
							| 137 | 
							
								12 135 136
							 | 
							ltleii | 
							 |-  0 <_ ; 6 4  | 
						
						
							| 138 | 
							
								54 135 55 137
							 | 
							sqrtmulii | 
							 |-  ( sqrt ` ( 2 x. ; 6 4 ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` ; 6 4 ) )  | 
						
						
							| 139 | 
							
								18
							 | 
							oveq2i | 
							 |-  ( ( sqrt ` 2 ) x. ( sqrt ` ; 6 4 ) ) = ( ( sqrt ` 2 ) x. 8 )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							eqtri | 
							 |-  ( sqrt ` ( 2 x. ; 6 4 ) ) = ( ( sqrt ` 2 ) x. 8 )  | 
						
						
							| 141 | 
							
								134 140
							 | 
							eqtrdi | 
							 |-  ( n = ; 6 4 -> ( sqrt ` ( 2 x. n ) ) = ( ( sqrt ` 2 ) x. 8 ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							oveq2d | 
							 |-  ( n = ; 6 4 -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) = ( ( log ` 2 ) / ( ( sqrt ` 2 ) x. 8 ) ) )  | 
						
						
							| 143 | 
							
								49 7
							 | 
							mulcli | 
							 |-  ( ( sqrt ` 2 ) x. 8 ) e. CC  | 
						
						
							| 144 | 
							
								
							 | 
							rpmulcl | 
							 |-  ( ( ( sqrt ` 2 ) e. RR+ /\ 8 e. RR+ ) -> ( ( sqrt ` 2 ) x. 8 ) e. RR+ )  | 
						
						
							| 145 | 
							
								66 22 144
							 | 
							sylancr | 
							 |-  ( 8 e. NN -> ( ( sqrt ` 2 ) x. 8 ) e. RR+ )  | 
						
						
							| 146 | 
							
								
							 | 
							rpne0 | 
							 |-  ( ( ( sqrt ` 2 ) x. 8 ) e. RR+ -> ( ( sqrt ` 2 ) x. 8 ) =/= 0 )  | 
						
						
							| 147 | 
							
								21 145 146
							 | 
							mp2b | 
							 |-  ( ( sqrt ` 2 ) x. 8 ) =/= 0  | 
						
						
							| 148 | 
							
								
							 | 
							divrec2 | 
							 |-  ( ( ( log ` 2 ) e. CC /\ ( ( sqrt ` 2 ) x. 8 ) e. CC /\ ( ( sqrt ` 2 ) x. 8 ) =/= 0 ) -> ( ( log ` 2 ) / ( ( sqrt ` 2 ) x. 8 ) ) = ( ( 1 / ( ( sqrt ` 2 ) x. 8 ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 149 | 
							
								39 143 147 148
							 | 
							mp3an | 
							 |-  ( ( log ` 2 ) / ( ( sqrt ` 2 ) x. 8 ) ) = ( ( 1 / ( ( sqrt ` 2 ) x. 8 ) ) x. ( log ` 2 ) )  | 
						
						
							| 150 | 
							
								49 7
							 | 
							mulcomi | 
							 |-  ( ( sqrt ` 2 ) x. 8 ) = ( 8 x. ( sqrt ` 2 ) )  | 
						
						
							| 151 | 
							
								150
							 | 
							oveq2i | 
							 |-  ( 1 / ( ( sqrt ` 2 ) x. 8 ) ) = ( 1 / ( 8 x. ( sqrt ` 2 ) ) )  | 
						
						
							| 152 | 
							
								
							 | 
							recdiv2 | 
							 |-  ( ( ( 8 e. CC /\ 8 =/= 0 ) /\ ( ( sqrt ` 2 ) e. CC /\ ( sqrt ` 2 ) =/= 0 ) ) -> ( ( 1 / 8 ) / ( sqrt ` 2 ) ) = ( 1 / ( 8 x. ( sqrt ` 2 ) ) ) )  | 
						
						
							| 153 | 
							
								7 40 49 72 152
							 | 
							mp4an | 
							 |-  ( ( 1 / 8 ) / ( sqrt ` 2 ) ) = ( 1 / ( 8 x. ( sqrt ` 2 ) ) )  | 
						
						
							| 154 | 
							
								151 153
							 | 
							eqtr4i | 
							 |-  ( 1 / ( ( sqrt ` 2 ) x. 8 ) ) = ( ( 1 / 8 ) / ( sqrt ` 2 ) )  | 
						
						
							| 155 | 
							
								154
							 | 
							oveq1i | 
							 |-  ( ( 1 / ( ( sqrt ` 2 ) x. 8 ) ) x. ( log ` 2 ) ) = ( ( ( 1 / 8 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) )  | 
						
						
							| 156 | 
							
								149 155
							 | 
							eqtri | 
							 |-  ( ( log ` 2 ) / ( ( sqrt ` 2 ) x. 8 ) ) = ( ( ( 1 / 8 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) )  | 
						
						
							| 157 | 
							
								142 156
							 | 
							eqtrdi | 
							 |-  ( n = ; 6 4 -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) = ( ( ( 1 / 8 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 158 | 
							
								132 157
							 | 
							oveq12d | 
							 |-  ( n = ; 6 4 -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) ) = ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) x. ( log ` 2 ) ) + ( ( ( 1 / 8 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) ) ) )  | 
						
						
							| 159 | 
							
								129 130
							 | 
							addcli | 
							 |-  ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) e. CC  | 
						
						
							| 160 | 
							
								7 40
							 | 
							reccli | 
							 |-  ( 1 / 8 ) e. CC  | 
						
						
							| 161 | 
							
								160 49 72
							 | 
							divcli | 
							 |-  ( ( 1 / 8 ) / ( sqrt ` 2 ) ) e. CC  | 
						
						
							| 162 | 
							
								159 161 39
							 | 
							adddiri | 
							 |-  ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) x. ( log ` 2 ) ) = ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) x. ( log ` 2 ) ) + ( ( ( 1 / 8 ) / ( sqrt ` 2 ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 163 | 
							
								158 162
							 | 
							eqtr4di | 
							 |-  ( n = ; 6 4 -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) ) = ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 164 | 
							
								
							 | 
							ovex | 
							 |-  ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) x. ( log ` 2 ) ) e. _V  | 
						
						
							| 165 | 
							
								163 1 164
							 | 
							fvmpt | 
							 |-  ( ; 6 4 e. NN -> ( F ` ; 6 4 ) = ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) x. ( log ` 2 ) ) )  | 
						
						
							| 166 | 
							
								5 165
							 | 
							ax-mp | 
							 |-  ( F ` ; 6 4 ) = ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) x. ( log ` 2 ) )  | 
						
						
							| 167 | 
							
								
							 | 
							3re | 
							 |-  3 e. RR  | 
						
						
							| 168 | 
							
								
							 | 
							4re | 
							 |-  4 e. RR  | 
						
						
							| 169 | 
							
								167 168 76
							 | 
							redivcli | 
							 |-  ( 3 / 4 ) e. RR  | 
						
						
							| 170 | 
							
								169 48 72
							 | 
							redivcli | 
							 |-  ( ( 3 / 4 ) / ( sqrt ` 2 ) ) e. RR  | 
						
						
							| 171 | 
							
								
							 | 
							9re | 
							 |-  9 e. RR  | 
						
						
							| 172 | 
							
								171 168 76
							 | 
							redivcli | 
							 |-  ( 9 / 4 ) e. RR  | 
						
						
							| 173 | 
							
								
							 | 
							5re | 
							 |-  5 e. RR  | 
						
						
							| 174 | 
							
								97
							 | 
							nnrei | 
							 |-  ( 2 ^ 5 ) e. RR  | 
						
						
							| 175 | 
							
								173 174 114
							 | 
							redivcli | 
							 |-  ( 5 / ( 2 ^ 5 ) ) e. RR  | 
						
						
							| 176 | 
							
								172 175
							 | 
							remulcli | 
							 |-  ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) e. RR  | 
						
						
							| 177 | 
							
								170 176
							 | 
							readdcli | 
							 |-  ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) e. RR  | 
						
						
							| 178 | 
							
								13 40
							 | 
							rereccli | 
							 |-  ( 1 / 8 ) e. RR  | 
						
						
							| 179 | 
							
								178 48 72
							 | 
							redivcli | 
							 |-  ( ( 1 / 8 ) / ( sqrt ` 2 ) ) e. RR  | 
						
						
							| 180 | 
							
								177 179
							 | 
							readdcli | 
							 |-  ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) e. RR  | 
						
						
							| 181 | 
							
								180 38
							 | 
							remulcli | 
							 |-  ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) x. ( log ` 2 ) ) e. RR  | 
						
						
							| 182 | 
							
								166 181
							 | 
							eqeltri | 
							 |-  ( F ` ; 6 4 ) e. RR  | 
						
						
							| 183 | 
							
								129 130 161
							 | 
							add32i | 
							 |-  ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) = ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) )  | 
						
						
							| 184 | 
							
								
							 | 
							6cn | 
							 |-  6 e. CC  | 
						
						
							| 185 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 186 | 
							
								184 185 7 40
							 | 
							divdiri | 
							 |-  ( ( 6 + 1 ) / 8 ) = ( ( 6 / 8 ) + ( 1 / 8 ) )  | 
						
						
							| 187 | 
							
								
							 | 
							df-7 | 
							 |-  7 = ( 6 + 1 )  | 
						
						
							| 188 | 
							
								187
							 | 
							oveq1i | 
							 |-  ( 7 / 8 ) = ( ( 6 + 1 ) / 8 )  | 
						
						
							| 189 | 
							
								
							 | 
							divcan5 | 
							 |-  ( ( 3 e. CC /\ ( 4 e. CC /\ 4 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 3 ) / ( 2 x. 4 ) ) = ( 3 / 4 ) )  | 
						
						
							| 190 | 
							
								34 189
							 | 
							mp3an1 | 
							 |-  ( ( ( 4 e. CC /\ 4 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 3 ) / ( 2 x. 4 ) ) = ( 3 / 4 ) )  | 
						
						
							| 191 | 
							
								52 76 90 99 190
							 | 
							mp4an | 
							 |-  ( ( 2 x. 3 ) / ( 2 x. 4 ) ) = ( 3 / 4 )  | 
						
						
							| 192 | 
							
								
							 | 
							3t2e6 | 
							 |-  ( 3 x. 2 ) = 6  | 
						
						
							| 193 | 
							
								34 90 192
							 | 
							mulcomli | 
							 |-  ( 2 x. 3 ) = 6  | 
						
						
							| 194 | 
							
								52 90 59
							 | 
							mulcomli | 
							 |-  ( 2 x. 4 ) = 8  | 
						
						
							| 195 | 
							
								193 194
							 | 
							oveq12i | 
							 |-  ( ( 2 x. 3 ) / ( 2 x. 4 ) ) = ( 6 / 8 )  | 
						
						
							| 196 | 
							
								191 195
							 | 
							eqtr3i | 
							 |-  ( 3 / 4 ) = ( 6 / 8 )  | 
						
						
							| 197 | 
							
								196
							 | 
							oveq1i | 
							 |-  ( ( 3 / 4 ) + ( 1 / 8 ) ) = ( ( 6 / 8 ) + ( 1 / 8 ) )  | 
						
						
							| 198 | 
							
								186 188 197
							 | 
							3eqtr4ri | 
							 |-  ( ( 3 / 4 ) + ( 1 / 8 ) ) = ( 7 / 8 )  | 
						
						
							| 199 | 
							
								198
							 | 
							oveq1i | 
							 |-  ( ( ( 3 / 4 ) + ( 1 / 8 ) ) / ( sqrt ` 2 ) ) = ( ( 7 / 8 ) / ( sqrt ` 2 ) )  | 
						
						
							| 200 | 
							
								128 160 49 72
							 | 
							divdiri | 
							 |-  ( ( ( 3 / 4 ) + ( 1 / 8 ) ) / ( sqrt ` 2 ) ) = ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) )  | 
						
						
							| 201 | 
							
								
							 | 
							7cn | 
							 |-  7 e. CC  | 
						
						
							| 202 | 
							
								201 7 49 40 72
							 | 
							divdiv32i | 
							 |-  ( ( 7 / 8 ) / ( sqrt ` 2 ) ) = ( ( 7 / ( sqrt ` 2 ) ) / 8 )  | 
						
						
							| 203 | 
							
								199 200 202
							 | 
							3eqtr3i | 
							 |-  ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) = ( ( 7 / ( sqrt ` 2 ) ) / 8 )  | 
						
						
							| 204 | 
							
								203
							 | 
							oveq1i | 
							 |-  ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) = ( ( ( 7 / ( sqrt ` 2 ) ) / 8 ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) )  | 
						
						
							| 205 | 
							
								183 204
							 | 
							eqtri | 
							 |-  ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) = ( ( ( 7 / ( sqrt ` 2 ) ) / 8 ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) )  | 
						
						
							| 206 | 
							
								
							 | 
							4nn0 | 
							 |-  4 e. NN0  | 
						
						
							| 207 | 
							
								
							 | 
							9nn0 | 
							 |-  9 e. NN0  | 
						
						
							| 208 | 
							
								
							 | 
							0nn0 | 
							 |-  0 e. NN0  | 
						
						
							| 209 | 
							
								
							 | 
							9lt10 | 
							 |-  9 < ; 1 0  | 
						
						
							| 210 | 
							
								
							 | 
							4lt5 | 
							 |-  4 < 5  | 
						
						
							| 211 | 
							
								206 91 207 208 209 210
							 | 
							decltc | 
							 |-  ; 4 9 < ; 5 0  | 
						
						
							| 212 | 
							
								
							 | 
							7t7e49 | 
							 |-  ( 7 x. 7 ) = ; 4 9  | 
						
						
							| 213 | 
							
								57
							 | 
							oveq1i | 
							 |-  ( ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) x. ( 5 x. 5 ) ) = ( 2 x. ( 5 x. 5 ) )  | 
						
						
							| 214 | 
							
								49 49 113 113
							 | 
							mul4i | 
							 |-  ( ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) x. ( 5 x. 5 ) ) = ( ( ( sqrt ` 2 ) x. 5 ) x. ( ( sqrt ` 2 ) x. 5 ) )  | 
						
						
							| 215 | 
							
								
							 | 
							5t2e10 | 
							 |-  ( 5 x. 2 ) = ; 1 0  | 
						
						
							| 216 | 
							
								113 90 215
							 | 
							mulcomli | 
							 |-  ( 2 x. 5 ) = ; 1 0  | 
						
						
							| 217 | 
							
								216
							 | 
							oveq1i | 
							 |-  ( ( 2 x. 5 ) x. 5 ) = ( ; 1 0 x. 5 )  | 
						
						
							| 218 | 
							
								90 113 113
							 | 
							mulassi | 
							 |-  ( ( 2 x. 5 ) x. 5 ) = ( 2 x. ( 5 x. 5 ) )  | 
						
						
							| 219 | 
							
								91
							 | 
							dec0u | 
							 |-  ( ; 1 0 x. 5 ) = ; 5 0  | 
						
						
							| 220 | 
							
								217 218 219
							 | 
							3eqtr3i | 
							 |-  ( 2 x. ( 5 x. 5 ) ) = ; 5 0  | 
						
						
							| 221 | 
							
								213 214 220
							 | 
							3eqtr3i | 
							 |-  ( ( ( sqrt ` 2 ) x. 5 ) x. ( ( sqrt ` 2 ) x. 5 ) ) = ; 5 0  | 
						
						
							| 222 | 
							
								211 212 221
							 | 
							3brtr4i | 
							 |-  ( 7 x. 7 ) < ( ( ( sqrt ` 2 ) x. 5 ) x. ( ( sqrt ` 2 ) x. 5 ) )  | 
						
						
							| 223 | 
							
								
							 | 
							7re | 
							 |-  7 e. RR  | 
						
						
							| 224 | 
							
								
							 | 
							7pos | 
							 |-  0 < 7  | 
						
						
							| 225 | 
							
								12 223 224
							 | 
							ltleii | 
							 |-  0 <_ 7  | 
						
						
							| 226 | 
							
								
							 | 
							nnrp | 
							 |-  ( 5 e. NN -> 5 e. RR+ )  | 
						
						
							| 227 | 
							
								106 226
							 | 
							ax-mp | 
							 |-  5 e. RR+  | 
						
						
							| 228 | 
							
								
							 | 
							rpmulcl | 
							 |-  ( ( ( sqrt ` 2 ) e. RR+ /\ 5 e. RR+ ) -> ( ( sqrt ` 2 ) x. 5 ) e. RR+ )  | 
						
						
							| 229 | 
							
								66 227 228
							 | 
							mp2an | 
							 |-  ( ( sqrt ` 2 ) x. 5 ) e. RR+  | 
						
						
							| 230 | 
							
								
							 | 
							rpge0 | 
							 |-  ( ( ( sqrt ` 2 ) x. 5 ) e. RR+ -> 0 <_ ( ( sqrt ` 2 ) x. 5 ) )  | 
						
						
							| 231 | 
							
								229 230
							 | 
							ax-mp | 
							 |-  0 <_ ( ( sqrt ` 2 ) x. 5 )  | 
						
						
							| 232 | 
							
								
							 | 
							rpre | 
							 |-  ( ( ( sqrt ` 2 ) x. 5 ) e. RR+ -> ( ( sqrt ` 2 ) x. 5 ) e. RR )  | 
						
						
							| 233 | 
							
								229 232
							 | 
							ax-mp | 
							 |-  ( ( sqrt ` 2 ) x. 5 ) e. RR  | 
						
						
							| 234 | 
							
								223 233
							 | 
							lt2msqi | 
							 |-  ( ( 0 <_ 7 /\ 0 <_ ( ( sqrt ` 2 ) x. 5 ) ) -> ( 7 < ( ( sqrt ` 2 ) x. 5 ) <-> ( 7 x. 7 ) < ( ( ( sqrt ` 2 ) x. 5 ) x. ( ( sqrt ` 2 ) x. 5 ) ) ) )  | 
						
						
							| 235 | 
							
								225 231 234
							 | 
							mp2an | 
							 |-  ( 7 < ( ( sqrt ` 2 ) x. 5 ) <-> ( 7 x. 7 ) < ( ( ( sqrt ` 2 ) x. 5 ) x. ( ( sqrt ` 2 ) x. 5 ) ) )  | 
						
						
							| 236 | 
							
								222 235
							 | 
							mpbir | 
							 |-  7 < ( ( sqrt ` 2 ) x. 5 )  | 
						
						
							| 237 | 
							
								
							 | 
							rpgt0 | 
							 |-  ( ( sqrt ` 2 ) e. RR+ -> 0 < ( sqrt ` 2 ) )  | 
						
						
							| 238 | 
							
								26 65 237
							 | 
							mp2b | 
							 |-  0 < ( sqrt ` 2 )  | 
						
						
							| 239 | 
							
								
							 | 
							ltdivmul | 
							 |-  ( ( 7 e. RR /\ 5 e. RR /\ ( ( sqrt ` 2 ) e. RR /\ 0 < ( sqrt ` 2 ) ) ) -> ( ( 7 / ( sqrt ` 2 ) ) < 5 <-> 7 < ( ( sqrt ` 2 ) x. 5 ) ) )  | 
						
						
							| 240 | 
							
								223 173 239
							 | 
							mp3an12 | 
							 |-  ( ( ( sqrt ` 2 ) e. RR /\ 0 < ( sqrt ` 2 ) ) -> ( ( 7 / ( sqrt ` 2 ) ) < 5 <-> 7 < ( ( sqrt ` 2 ) x. 5 ) ) )  | 
						
						
							| 241 | 
							
								48 238 240
							 | 
							mp2an | 
							 |-  ( ( 7 / ( sqrt ` 2 ) ) < 5 <-> 7 < ( ( sqrt ` 2 ) x. 5 ) )  | 
						
						
							| 242 | 
							
								236 241
							 | 
							mpbir | 
							 |-  ( 7 / ( sqrt ` 2 ) ) < 5  | 
						
						
							| 243 | 
							
								223 48 72
							 | 
							redivcli | 
							 |-  ( 7 / ( sqrt ` 2 ) ) e. RR  | 
						
						
							| 244 | 
							
								243 173 13 14
							 | 
							ltdiv1ii | 
							 |-  ( ( 7 / ( sqrt ` 2 ) ) < 5 <-> ( ( 7 / ( sqrt ` 2 ) ) / 8 ) < ( 5 / 8 ) )  | 
						
						
							| 245 | 
							
								242 244
							 | 
							mpbi | 
							 |-  ( ( 7 / ( sqrt ` 2 ) ) / 8 ) < ( 5 / 8 )  | 
						
						
							| 246 | 
							
								
							 | 
							divsubdir | 
							 |-  ( ( 8 e. CC /\ 3 e. CC /\ ( 8 e. CC /\ 8 =/= 0 ) ) -> ( ( 8 - 3 ) / 8 ) = ( ( 8 / 8 ) - ( 3 / 8 ) ) )  | 
						
						
							| 247 | 
							
								7 34 246
							 | 
							mp3an12 | 
							 |-  ( ( 8 e. CC /\ 8 =/= 0 ) -> ( ( 8 - 3 ) / 8 ) = ( ( 8 / 8 ) - ( 3 / 8 ) ) )  | 
						
						
							| 248 | 
							
								7 40 247
							 | 
							mp2an | 
							 |-  ( ( 8 - 3 ) / 8 ) = ( ( 8 / 8 ) - ( 3 / 8 ) )  | 
						
						
							| 249 | 
							
								
							 | 
							5p3e8 | 
							 |-  ( 5 + 3 ) = 8  | 
						
						
							| 250 | 
							
								249
							 | 
							oveq1i | 
							 |-  ( ( 5 + 3 ) - 3 ) = ( 8 - 3 )  | 
						
						
							| 251 | 
							
								113 34
							 | 
							pncan3oi | 
							 |-  ( ( 5 + 3 ) - 3 ) = 5  | 
						
						
							| 252 | 
							
								250 251
							 | 
							eqtr3i | 
							 |-  ( 8 - 3 ) = 5  | 
						
						
							| 253 | 
							
								252
							 | 
							oveq1i | 
							 |-  ( ( 8 - 3 ) / 8 ) = ( 5 / 8 )  | 
						
						
							| 254 | 
							
								7 40
							 | 
							dividi | 
							 |-  ( 8 / 8 ) = 1  | 
						
						
							| 255 | 
							
								254
							 | 
							oveq1i | 
							 |-  ( ( 8 / 8 ) - ( 3 / 8 ) ) = ( 1 - ( 3 / 8 ) )  | 
						
						
							| 256 | 
							
								248 253 255
							 | 
							3eqtr3ri | 
							 |-  ( 1 - ( 3 / 8 ) ) = ( 5 / 8 )  | 
						
						
							| 257 | 
							
								
							 | 
							5lt8 | 
							 |-  5 < 8  | 
						
						
							| 258 | 
							
								13 173
							 | 
							remulcli | 
							 |-  ( 8 x. 5 ) e. RR  | 
						
						
							| 259 | 
							
								173 13 258
							 | 
							ltadd2i | 
							 |-  ( 5 < 8 <-> ( ( 8 x. 5 ) + 5 ) < ( ( 8 x. 5 ) + 8 ) )  | 
						
						
							| 260 | 
							
								257 259
							 | 
							mpbi | 
							 |-  ( ( 8 x. 5 ) + 5 ) < ( ( 8 x. 5 ) + 8 )  | 
						
						
							| 261 | 
							
								
							 | 
							df-9 | 
							 |-  9 = ( 8 + 1 )  | 
						
						
							| 262 | 
							
								261
							 | 
							oveq1i | 
							 |-  ( 9 x. 5 ) = ( ( 8 + 1 ) x. 5 )  | 
						
						
							| 263 | 
							
								7 185 113
							 | 
							adddiri | 
							 |-  ( ( 8 + 1 ) x. 5 ) = ( ( 8 x. 5 ) + ( 1 x. 5 ) )  | 
						
						
							| 264 | 
							
								113
							 | 
							mullidi | 
							 |-  ( 1 x. 5 ) = 5  | 
						
						
							| 265 | 
							
								264
							 | 
							oveq2i | 
							 |-  ( ( 8 x. 5 ) + ( 1 x. 5 ) ) = ( ( 8 x. 5 ) + 5 )  | 
						
						
							| 266 | 
							
								262 263 265
							 | 
							3eqtri | 
							 |-  ( 9 x. 5 ) = ( ( 8 x. 5 ) + 5 )  | 
						
						
							| 267 | 
							
								87
							 | 
							oveq2i | 
							 |-  ( 8 x. 6 ) = ( 8 x. ( 5 + 1 ) )  | 
						
						
							| 268 | 
							
								7 113 185
							 | 
							adddii | 
							 |-  ( 8 x. ( 5 + 1 ) ) = ( ( 8 x. 5 ) + ( 8 x. 1 ) )  | 
						
						
							| 269 | 
							
								7
							 | 
							mulridi | 
							 |-  ( 8 x. 1 ) = 8  | 
						
						
							| 270 | 
							
								269
							 | 
							oveq2i | 
							 |-  ( ( 8 x. 5 ) + ( 8 x. 1 ) ) = ( ( 8 x. 5 ) + 8 )  | 
						
						
							| 271 | 
							
								267 268 270
							 | 
							3eqtri | 
							 |-  ( 8 x. 6 ) = ( ( 8 x. 5 ) + 8 )  | 
						
						
							| 272 | 
							
								260 266 271
							 | 
							3brtr4i | 
							 |-  ( 9 x. 5 ) < ( 8 x. 6 )  | 
						
						
							| 273 | 
							
								171 173
							 | 
							remulcli | 
							 |-  ( 9 x. 5 ) e. RR  | 
						
						
							| 274 | 
							
								
							 | 
							6re | 
							 |-  6 e. RR  | 
						
						
							| 275 | 
							
								13 274
							 | 
							remulcli | 
							 |-  ( 8 x. 6 ) e. RR  | 
						
						
							| 276 | 
							
								168 174
							 | 
							remulcli | 
							 |-  ( 4 x. ( 2 ^ 5 ) ) e. RR  | 
						
						
							| 277 | 
							
								4 97
							 | 
							nnmulcli | 
							 |-  ( 4 x. ( 2 ^ 5 ) ) e. NN  | 
						
						
							| 278 | 
							
								277
							 | 
							nngt0i | 
							 |-  0 < ( 4 x. ( 2 ^ 5 ) )  | 
						
						
							| 279 | 
							
								273 275 276 278
							 | 
							ltdiv1ii | 
							 |-  ( ( 9 x. 5 ) < ( 8 x. 6 ) <-> ( ( 9 x. 5 ) / ( 4 x. ( 2 ^ 5 ) ) ) < ( ( 8 x. 6 ) / ( 4 x. ( 2 ^ 5 ) ) ) )  | 
						
						
							| 280 | 
							
								272 279
							 | 
							mpbi | 
							 |-  ( ( 9 x. 5 ) / ( 4 x. ( 2 ^ 5 ) ) ) < ( ( 8 x. 6 ) / ( 4 x. ( 2 ^ 5 ) ) )  | 
						
						
							| 281 | 
							
								122 52 113 98 76 114
							 | 
							divmuldivi | 
							 |-  ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) = ( ( 9 x. 5 ) / ( 4 x. ( 2 ^ 5 ) ) )  | 
						
						
							| 282 | 
							
								
							 | 
							nnexpcl | 
							 |-  ( ( 2 e. NN /\ 4 e. NN0 ) -> ( 2 ^ 4 ) e. NN )  | 
						
						
							| 283 | 
							
								35 206 282
							 | 
							mp2an | 
							 |-  ( 2 ^ 4 ) e. NN  | 
						
						
							| 284 | 
							
								283
							 | 
							nncni | 
							 |-  ( 2 ^ 4 ) e. CC  | 
						
						
							| 285 | 
							
								283
							 | 
							nnne0i | 
							 |-  ( 2 ^ 4 ) =/= 0  | 
						
						
							| 286 | 
							
								
							 | 
							divcan5 | 
							 |-  ( ( 3 e. CC /\ ( 8 e. CC /\ 8 =/= 0 ) /\ ( ( 2 ^ 4 ) e. CC /\ ( 2 ^ 4 ) =/= 0 ) ) -> ( ( ( 2 ^ 4 ) x. 3 ) / ( ( 2 ^ 4 ) x. 8 ) ) = ( 3 / 8 ) )  | 
						
						
							| 287 | 
							
								34 286
							 | 
							mp3an1 | 
							 |-  ( ( ( 8 e. CC /\ 8 =/= 0 ) /\ ( ( 2 ^ 4 ) e. CC /\ ( 2 ^ 4 ) =/= 0 ) ) -> ( ( ( 2 ^ 4 ) x. 3 ) / ( ( 2 ^ 4 ) x. 8 ) ) = ( 3 / 8 ) )  | 
						
						
							| 288 | 
							
								7 40 284 285 287
							 | 
							mp4an | 
							 |-  ( ( ( 2 ^ 4 ) x. 3 ) / ( ( 2 ^ 4 ) x. 8 ) ) = ( 3 / 8 )  | 
						
						
							| 289 | 
							
								
							 | 
							df-4 | 
							 |-  4 = ( 3 + 1 )  | 
						
						
							| 290 | 
							
								289
							 | 
							oveq2i | 
							 |-  ( 2 ^ 4 ) = ( 2 ^ ( 3 + 1 ) )  | 
						
						
							| 291 | 
							
								
							 | 
							3nn0 | 
							 |-  3 e. NN0  | 
						
						
							| 292 | 
							
								
							 | 
							expp1 | 
							 |-  ( ( 2 e. CC /\ 3 e. NN0 ) -> ( 2 ^ ( 3 + 1 ) ) = ( ( 2 ^ 3 ) x. 2 ) )  | 
						
						
							| 293 | 
							
								90 291 292
							 | 
							mp2an | 
							 |-  ( 2 ^ ( 3 + 1 ) ) = ( ( 2 ^ 3 ) x. 2 )  | 
						
						
							| 294 | 
							
								24
							 | 
							oveq1i | 
							 |-  ( ( 2 ^ 3 ) x. 2 ) = ( 8 x. 2 )  | 
						
						
							| 295 | 
							
								290 293 294
							 | 
							3eqtri | 
							 |-  ( 2 ^ 4 ) = ( 8 x. 2 )  | 
						
						
							| 296 | 
							
								295
							 | 
							oveq1i | 
							 |-  ( ( 2 ^ 4 ) x. 3 ) = ( ( 8 x. 2 ) x. 3 )  | 
						
						
							| 297 | 
							
								7 90 34
							 | 
							mulassi | 
							 |-  ( ( 8 x. 2 ) x. 3 ) = ( 8 x. ( 2 x. 3 ) )  | 
						
						
							| 298 | 
							
								193
							 | 
							oveq2i | 
							 |-  ( 8 x. ( 2 x. 3 ) ) = ( 8 x. 6 )  | 
						
						
							| 299 | 
							
								296 297 298
							 | 
							3eqtri | 
							 |-  ( ( 2 ^ 4 ) x. 3 ) = ( 8 x. 6 )  | 
						
						
							| 300 | 
							
								
							 | 
							4p3e7 | 
							 |-  ( 4 + 3 ) = 7  | 
						
						
							| 301 | 
							
								
							 | 
							5p2e7 | 
							 |-  ( 5 + 2 ) = 7  | 
						
						
							| 302 | 
							
								113 90
							 | 
							addcomi | 
							 |-  ( 5 + 2 ) = ( 2 + 5 )  | 
						
						
							| 303 | 
							
								300 301 302
							 | 
							3eqtr2i | 
							 |-  ( 4 + 3 ) = ( 2 + 5 )  | 
						
						
							| 304 | 
							
								303
							 | 
							oveq2i | 
							 |-  ( 2 ^ ( 4 + 3 ) ) = ( 2 ^ ( 2 + 5 ) )  | 
						
						
							| 305 | 
							
								
							 | 
							expadd | 
							 |-  ( ( 2 e. CC /\ 4 e. NN0 /\ 3 e. NN0 ) -> ( 2 ^ ( 4 + 3 ) ) = ( ( 2 ^ 4 ) x. ( 2 ^ 3 ) ) )  | 
						
						
							| 306 | 
							
								90 206 291 305
							 | 
							mp3an | 
							 |-  ( 2 ^ ( 4 + 3 ) ) = ( ( 2 ^ 4 ) x. ( 2 ^ 3 ) )  | 
						
						
							| 307 | 
							
								
							 | 
							2nn0 | 
							 |-  2 e. NN0  | 
						
						
							| 308 | 
							
								
							 | 
							expadd | 
							 |-  ( ( 2 e. CC /\ 2 e. NN0 /\ 5 e. NN0 ) -> ( 2 ^ ( 2 + 5 ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ 5 ) ) )  | 
						
						
							| 309 | 
							
								90 307 91 308
							 | 
							mp3an | 
							 |-  ( 2 ^ ( 2 + 5 ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ 5 ) )  | 
						
						
							| 310 | 
							
								304 306 309
							 | 
							3eqtr3i | 
							 |-  ( ( 2 ^ 4 ) x. ( 2 ^ 3 ) ) = ( ( 2 ^ 2 ) x. ( 2 ^ 5 ) )  | 
						
						
							| 311 | 
							
								24
							 | 
							oveq2i | 
							 |-  ( ( 2 ^ 4 ) x. ( 2 ^ 3 ) ) = ( ( 2 ^ 4 ) x. 8 )  | 
						
						
							| 312 | 
							
								
							 | 
							sq2 | 
							 |-  ( 2 ^ 2 ) = 4  | 
						
						
							| 313 | 
							
								312
							 | 
							oveq1i | 
							 |-  ( ( 2 ^ 2 ) x. ( 2 ^ 5 ) ) = ( 4 x. ( 2 ^ 5 ) )  | 
						
						
							| 314 | 
							
								310 311 313
							 | 
							3eqtr3i | 
							 |-  ( ( 2 ^ 4 ) x. 8 ) = ( 4 x. ( 2 ^ 5 ) )  | 
						
						
							| 315 | 
							
								299 314
							 | 
							oveq12i | 
							 |-  ( ( ( 2 ^ 4 ) x. 3 ) / ( ( 2 ^ 4 ) x. 8 ) ) = ( ( 8 x. 6 ) / ( 4 x. ( 2 ^ 5 ) ) )  | 
						
						
							| 316 | 
							
								288 315
							 | 
							eqtr3i | 
							 |-  ( 3 / 8 ) = ( ( 8 x. 6 ) / ( 4 x. ( 2 ^ 5 ) ) )  | 
						
						
							| 317 | 
							
								280 281 316
							 | 
							3brtr4i | 
							 |-  ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) < ( 3 / 8 )  | 
						
						
							| 318 | 
							
								167 13 40
							 | 
							redivcli | 
							 |-  ( 3 / 8 ) e. RR  | 
						
						
							| 319 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 320 | 
							
								
							 | 
							ltsub2 | 
							 |-  ( ( ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) e. RR /\ ( 3 / 8 ) e. RR /\ 1 e. RR ) -> ( ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) < ( 3 / 8 ) <-> ( 1 - ( 3 / 8 ) ) < ( 1 - ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) ) )  | 
						
						
							| 321 | 
							
								176 318 319 320
							 | 
							mp3an | 
							 |-  ( ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) < ( 3 / 8 ) <-> ( 1 - ( 3 / 8 ) ) < ( 1 - ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) )  | 
						
						
							| 322 | 
							
								317 321
							 | 
							mpbi | 
							 |-  ( 1 - ( 3 / 8 ) ) < ( 1 - ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) )  | 
						
						
							| 323 | 
							
								256 322
							 | 
							eqbrtrri | 
							 |-  ( 5 / 8 ) < ( 1 - ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) )  | 
						
						
							| 324 | 
							
								243 13 40
							 | 
							redivcli | 
							 |-  ( ( 7 / ( sqrt ` 2 ) ) / 8 ) e. RR  | 
						
						
							| 325 | 
							
								173 13 40
							 | 
							redivcli | 
							 |-  ( 5 / 8 ) e. RR  | 
						
						
							| 326 | 
							
								319 176
							 | 
							resubcli | 
							 |-  ( 1 - ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) e. RR  | 
						
						
							| 327 | 
							
								324 325 326
							 | 
							lttri | 
							 |-  ( ( ( ( 7 / ( sqrt ` 2 ) ) / 8 ) < ( 5 / 8 ) /\ ( 5 / 8 ) < ( 1 - ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) ) -> ( ( 7 / ( sqrt ` 2 ) ) / 8 ) < ( 1 - ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) )  | 
						
						
							| 328 | 
							
								245 323 327
							 | 
							mp2an | 
							 |-  ( ( 7 / ( sqrt ` 2 ) ) / 8 ) < ( 1 - ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) )  | 
						
						
							| 329 | 
							
								324 176 319
							 | 
							ltaddsubi | 
							 |-  ( ( ( ( 7 / ( sqrt ` 2 ) ) / 8 ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) < 1 <-> ( ( 7 / ( sqrt ` 2 ) ) / 8 ) < ( 1 - ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) )  | 
						
						
							| 330 | 
							
								328 329
							 | 
							mpbir | 
							 |-  ( ( ( 7 / ( sqrt ` 2 ) ) / 8 ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) < 1  | 
						
						
							| 331 | 
							
								205 330
							 | 
							eqbrtri | 
							 |-  ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) < 1  | 
						
						
							| 332 | 
							
								
							 | 
							1lt2 | 
							 |-  1 < 2  | 
						
						
							| 333 | 
							
								
							 | 
							rplogcl | 
							 |-  ( ( 2 e. RR /\ 1 < 2 ) -> ( log ` 2 ) e. RR+ )  | 
						
						
							| 334 | 
							
								54 332 333
							 | 
							mp2an | 
							 |-  ( log ` 2 ) e. RR+  | 
						
						
							| 335 | 
							
								
							 | 
							rpgt0 | 
							 |-  ( ( log ` 2 ) e. RR+ -> 0 < ( log ` 2 ) )  | 
						
						
							| 336 | 
							
								334 335
							 | 
							ax-mp | 
							 |-  0 < ( log ` 2 )  | 
						
						
							| 337 | 
							
								180 319 38 336
							 | 
							ltmul1ii | 
							 |-  ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) < 1 <-> ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) x. ( log ` 2 ) ) < ( 1 x. ( log ` 2 ) ) )  | 
						
						
							| 338 | 
							
								331 337
							 | 
							mpbi | 
							 |-  ( ( ( ( ( 3 / 4 ) / ( sqrt ` 2 ) ) + ( ( 9 / 4 ) x. ( 5 / ( 2 ^ 5 ) ) ) ) + ( ( 1 / 8 ) / ( sqrt ` 2 ) ) ) x. ( log ` 2 ) ) < ( 1 x. ( log ` 2 ) )  | 
						
						
							| 339 | 
							
								39
							 | 
							mullidi | 
							 |-  ( 1 x. ( log ` 2 ) ) = ( log ` 2 )  | 
						
						
							| 340 | 
							
								339
							 | 
							eqcomi | 
							 |-  ( log ` 2 ) = ( 1 x. ( log ` 2 ) )  | 
						
						
							| 341 | 
							
								338 166 340
							 | 
							3brtr4i | 
							 |-  ( F ` ; 6 4 ) < ( log ` 2 )  | 
						
						
							| 342 | 
							
								182 341
							 | 
							pm3.2i | 
							 |-  ( ( F ` ; 6 4 ) e. RR /\ ( F ` ; 6 4 ) < ( log ` 2 ) )  |