Metamath Proof Explorer


Theorem bposlem9

Description: Lemma for bpos . Derive a contradiction. (Contributed by Mario Carneiro, 14-Mar-2014) (Proof shortened by AV, 15-Sep-2021)

Ref Expression
Hypotheses bposlem7.1
|- F = ( n e. NN |-> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) ) )
bposlem7.2
|- G = ( x e. RR+ |-> ( ( log ` x ) / x ) )
bposlem9.3
|- ( ph -> N e. NN )
bposlem9.4
|- ( ph -> ; 6 4 < N )
bposlem9.5
|- ( ph -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) )
Assertion bposlem9
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 bposlem7.1
 |-  F = ( n e. NN |-> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) ) )
2 bposlem7.2
 |-  G = ( x e. RR+ |-> ( ( log ` x ) / x ) )
3 bposlem9.3
 |-  ( ph -> N e. NN )
4 bposlem9.4
 |-  ( ph -> ; 6 4 < N )
5 bposlem9.5
 |-  ( ph -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) )
6 6nn0
 |-  6 e. NN0
7 4nn
 |-  4 e. NN
8 6 7 decnncl
 |-  ; 6 4 e. NN
9 8 a1i
 |-  ( ph -> ; 6 4 e. NN )
10 ere
 |-  _e e. RR
11 8re
 |-  8 e. RR
12 egt2lt3
 |-  ( 2 < _e /\ _e < 3 )
13 12 simpri
 |-  _e < 3
14 3lt8
 |-  3 < 8
15 3re
 |-  3 e. RR
16 10 15 11 lttri
 |-  ( ( _e < 3 /\ 3 < 8 ) -> _e < 8 )
17 13 14 16 mp2an
 |-  _e < 8
18 10 11 17 ltleii
 |-  _e <_ 8
19 0re
 |-  0 e. RR
20 epos
 |-  0 < _e
21 19 10 20 ltleii
 |-  0 <_ _e
22 8pos
 |-  0 < 8
23 19 11 22 ltleii
 |-  0 <_ 8
24 le2sq
 |-  ( ( ( _e e. RR /\ 0 <_ _e ) /\ ( 8 e. RR /\ 0 <_ 8 ) ) -> ( _e <_ 8 <-> ( _e ^ 2 ) <_ ( 8 ^ 2 ) ) )
25 10 21 11 23 24 mp4an
 |-  ( _e <_ 8 <-> ( _e ^ 2 ) <_ ( 8 ^ 2 ) )
26 18 25 mpbi
 |-  ( _e ^ 2 ) <_ ( 8 ^ 2 )
27 11 recni
 |-  8 e. CC
28 27 sqvali
 |-  ( 8 ^ 2 ) = ( 8 x. 8 )
29 8t8e64
 |-  ( 8 x. 8 ) = ; 6 4
30 28 29 eqtri
 |-  ( 8 ^ 2 ) = ; 6 4
31 26 30 breqtri
 |-  ( _e ^ 2 ) <_ ; 6 4
32 31 a1i
 |-  ( ph -> ( _e ^ 2 ) <_ ; 6 4 )
33 10 resqcli
 |-  ( _e ^ 2 ) e. RR
34 33 a1i
 |-  ( ph -> ( _e ^ 2 ) e. RR )
35 8 nnrei
 |-  ; 6 4 e. RR
36 35 a1i
 |-  ( ph -> ; 6 4 e. RR )
37 3 nnred
 |-  ( ph -> N e. RR )
38 ltle
 |-  ( ( ; 6 4 e. RR /\ N e. RR ) -> ( ; 6 4 < N -> ; 6 4 <_ N ) )
39 35 37 38 sylancr
 |-  ( ph -> ( ; 6 4 < N -> ; 6 4 <_ N ) )
40 4 39 mpd
 |-  ( ph -> ; 6 4 <_ N )
41 34 36 37 32 40 letrd
 |-  ( ph -> ( _e ^ 2 ) <_ N )
42 1 2 9 3 32 41 bposlem7
 |-  ( ph -> ( ; 6 4 < N -> ( F ` N ) < ( F ` ; 6 4 ) ) )
43 4 42 mpd
 |-  ( ph -> ( F ` N ) < ( F ` ; 6 4 ) )
44 1 2 bposlem8
 |-  ( ( F ` ; 6 4 ) e. RR /\ ( F ` ; 6 4 ) < ( log ` 2 ) )
45 44 a1i
 |-  ( ph -> ( ( F ` ; 6 4 ) e. RR /\ ( F ` ; 6 4 ) < ( log ` 2 ) ) )
46 45 simpld
 |-  ( ph -> ( F ` ; 6 4 ) e. RR )
47 2fveq3
 |-  ( n = N -> ( G ` ( sqrt ` n ) ) = ( G ` ( sqrt ` N ) ) )
48 47 oveq2d
 |-  ( n = N -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) = ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) )
49 fvoveq1
 |-  ( n = N -> ( G ` ( n / 2 ) ) = ( G ` ( N / 2 ) ) )
50 49 oveq2d
 |-  ( n = N -> ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) = ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) )
51 48 50 oveq12d
 |-  ( n = N -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) = ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) )
52 oveq2
 |-  ( n = N -> ( 2 x. n ) = ( 2 x. N ) )
53 52 fveq2d
 |-  ( n = N -> ( sqrt ` ( 2 x. n ) ) = ( sqrt ` ( 2 x. N ) ) )
54 53 oveq2d
 |-  ( n = N -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) = ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) )
55 51 54 oveq12d
 |-  ( n = N -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` n ) ) ) + ( ( 9 / 4 ) x. ( G ` ( n / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. n ) ) ) ) = ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) )
56 ovex
 |-  ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) e. _V
57 55 1 56 fvmpt
 |-  ( N e. NN -> ( F ` N ) = ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) )
58 3 57 syl
 |-  ( ph -> ( F ` N ) = ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) )
59 sqrt2re
 |-  ( sqrt ` 2 ) e. RR
60 3 nnrpd
 |-  ( ph -> N e. RR+ )
61 60 rpsqrtcld
 |-  ( ph -> ( sqrt ` N ) e. RR+ )
62 fveq2
 |-  ( x = ( sqrt ` N ) -> ( log ` x ) = ( log ` ( sqrt ` N ) ) )
63 id
 |-  ( x = ( sqrt ` N ) -> x = ( sqrt ` N ) )
64 62 63 oveq12d
 |-  ( x = ( sqrt ` N ) -> ( ( log ` x ) / x ) = ( ( log ` ( sqrt ` N ) ) / ( sqrt ` N ) ) )
65 ovex
 |-  ( ( log ` ( sqrt ` N ) ) / ( sqrt ` N ) ) e. _V
66 64 2 65 fvmpt
 |-  ( ( sqrt ` N ) e. RR+ -> ( G ` ( sqrt ` N ) ) = ( ( log ` ( sqrt ` N ) ) / ( sqrt ` N ) ) )
67 61 66 syl
 |-  ( ph -> ( G ` ( sqrt ` N ) ) = ( ( log ` ( sqrt ` N ) ) / ( sqrt ` N ) ) )
68 61 relogcld
 |-  ( ph -> ( log ` ( sqrt ` N ) ) e. RR )
69 68 61 rerpdivcld
 |-  ( ph -> ( ( log ` ( sqrt ` N ) ) / ( sqrt ` N ) ) e. RR )
70 67 69 eqeltrd
 |-  ( ph -> ( G ` ( sqrt ` N ) ) e. RR )
71 remulcl
 |-  ( ( ( sqrt ` 2 ) e. RR /\ ( G ` ( sqrt ` N ) ) e. RR ) -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) e. RR )
72 59 70 71 sylancr
 |-  ( ph -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) e. RR )
73 9re
 |-  9 e. RR
74 4re
 |-  4 e. RR
75 4ne0
 |-  4 =/= 0
76 73 74 75 redivcli
 |-  ( 9 / 4 ) e. RR
77 60 rphalfcld
 |-  ( ph -> ( N / 2 ) e. RR+ )
78 fveq2
 |-  ( x = ( N / 2 ) -> ( log ` x ) = ( log ` ( N / 2 ) ) )
79 id
 |-  ( x = ( N / 2 ) -> x = ( N / 2 ) )
80 78 79 oveq12d
 |-  ( x = ( N / 2 ) -> ( ( log ` x ) / x ) = ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) )
81 ovex
 |-  ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) e. _V
82 80 2 81 fvmpt
 |-  ( ( N / 2 ) e. RR+ -> ( G ` ( N / 2 ) ) = ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) )
83 77 82 syl
 |-  ( ph -> ( G ` ( N / 2 ) ) = ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) )
84 77 relogcld
 |-  ( ph -> ( log ` ( N / 2 ) ) e. RR )
85 84 77 rerpdivcld
 |-  ( ph -> ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) e. RR )
86 83 85 eqeltrd
 |-  ( ph -> ( G ` ( N / 2 ) ) e. RR )
87 remulcl
 |-  ( ( ( 9 / 4 ) e. RR /\ ( G ` ( N / 2 ) ) e. RR ) -> ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) e. RR )
88 76 86 87 sylancr
 |-  ( ph -> ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) e. RR )
89 72 88 readdcld
 |-  ( ph -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) e. RR )
90 2rp
 |-  2 e. RR+
91 relogcl
 |-  ( 2 e. RR+ -> ( log ` 2 ) e. RR )
92 90 91 ax-mp
 |-  ( log ` 2 ) e. RR
93 rpmulcl
 |-  ( ( 2 e. RR+ /\ N e. RR+ ) -> ( 2 x. N ) e. RR+ )
94 90 60 93 sylancr
 |-  ( ph -> ( 2 x. N ) e. RR+ )
95 94 rpsqrtcld
 |-  ( ph -> ( sqrt ` ( 2 x. N ) ) e. RR+ )
96 rerpdivcl
 |-  ( ( ( log ` 2 ) e. RR /\ ( sqrt ` ( 2 x. N ) ) e. RR+ ) -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) e. RR )
97 92 95 96 sylancr
 |-  ( ph -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) e. RR )
98 89 97 readdcld
 |-  ( ph -> ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) e. RR )
99 58 98 eqeltrd
 |-  ( ph -> ( F ` N ) e. RR )
100 92 a1i
 |-  ( ph -> ( log ` 2 ) e. RR )
101 45 simprd
 |-  ( ph -> ( F ` ; 6 4 ) < ( log ` 2 ) )
102 nnrp
 |-  ( 4 e. NN -> 4 e. RR+ )
103 7 102 ax-mp
 |-  4 e. RR+
104 relogcl
 |-  ( 4 e. RR+ -> ( log ` 4 ) e. RR )
105 103 104 ax-mp
 |-  ( log ` 4 ) e. RR
106 remulcl
 |-  ( ( N e. RR /\ ( log ` 4 ) e. RR ) -> ( N x. ( log ` 4 ) ) e. RR )
107 37 105 106 sylancl
 |-  ( ph -> ( N x. ( log ` 4 ) ) e. RR )
108 60 relogcld
 |-  ( ph -> ( log ` N ) e. RR )
109 107 108 resubcld
 |-  ( ph -> ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) e. RR )
110 rpre
 |-  ( ( 2 x. N ) e. RR+ -> ( 2 x. N ) e. RR )
111 rpge0
 |-  ( ( 2 x. N ) e. RR+ -> 0 <_ ( 2 x. N ) )
112 110 111 resqrtcld
 |-  ( ( 2 x. N ) e. RR+ -> ( sqrt ` ( 2 x. N ) ) e. RR )
113 94 112 syl
 |-  ( ph -> ( sqrt ` ( 2 x. N ) ) e. RR )
114 3nn
 |-  3 e. NN
115 nndivre
 |-  ( ( ( sqrt ` ( 2 x. N ) ) e. RR /\ 3 e. NN ) -> ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR )
116 113 114 115 sylancl
 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR )
117 2re
 |-  2 e. RR
118 readdcl
 |-  ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. RR /\ 2 e. RR ) -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) e. RR )
119 116 117 118 sylancl
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) e. RR )
120 94 relogcld
 |-  ( ph -> ( log ` ( 2 x. N ) ) e. RR )
121 119 120 remulcld
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) e. RR )
122 remulcl
 |-  ( ( 4 e. RR /\ N e. RR ) -> ( 4 x. N ) e. RR )
123 74 37 122 sylancr
 |-  ( ph -> ( 4 x. N ) e. RR )
124 nndivre
 |-  ( ( ( 4 x. N ) e. RR /\ 3 e. NN ) -> ( ( 4 x. N ) / 3 ) e. RR )
125 123 114 124 sylancl
 |-  ( ph -> ( ( 4 x. N ) / 3 ) e. RR )
126 5re
 |-  5 e. RR
127 resubcl
 |-  ( ( ( ( 4 x. N ) / 3 ) e. RR /\ 5 e. RR ) -> ( ( ( 4 x. N ) / 3 ) - 5 ) e. RR )
128 125 126 127 sylancl
 |-  ( ph -> ( ( ( 4 x. N ) / 3 ) - 5 ) e. RR )
129 remulcl
 |-  ( ( ( ( ( 4 x. N ) / 3 ) - 5 ) e. RR /\ ( log ` 2 ) e. RR ) -> ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) e. RR )
130 128 92 129 sylancl
 |-  ( ph -> ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) e. RR )
131 121 130 readdcld
 |-  ( ph -> ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) e. RR )
132 remulcl
 |-  ( ( ( ( 4 x. N ) / 3 ) e. RR /\ ( log ` 2 ) e. RR ) -> ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) e. RR )
133 125 92 132 sylancl
 |-  ( ph -> ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) e. RR )
134 133 108 resubcld
 |-  ( ph -> ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) e. RR )
135 3 nnzd
 |-  ( ph -> N e. ZZ )
136 df-5
 |-  5 = ( 4 + 1 )
137 74 a1i
 |-  ( ph -> 4 e. RR )
138 6nn
 |-  6 e. NN
139 4nn0
 |-  4 e. NN0
140 4lt10
 |-  4 < ; 1 0
141 138 139 139 140 declti
 |-  4 < ; 6 4
142 141 a1i
 |-  ( ph -> 4 < ; 6 4 )
143 137 36 37 142 4 lttrd
 |-  ( ph -> 4 < N )
144 4z
 |-  4 e. ZZ
145 zltp1le
 |-  ( ( 4 e. ZZ /\ N e. ZZ ) -> ( 4 < N <-> ( 4 + 1 ) <_ N ) )
146 144 135 145 sylancr
 |-  ( ph -> ( 4 < N <-> ( 4 + 1 ) <_ N ) )
147 143 146 mpbid
 |-  ( ph -> ( 4 + 1 ) <_ N )
148 136 147 eqbrtrid
 |-  ( ph -> 5 <_ N )
149 5nn
 |-  5 e. NN
150 149 nnzi
 |-  5 e. ZZ
151 150 eluz1i
 |-  ( N e. ( ZZ>= ` 5 ) <-> ( N e. ZZ /\ 5 <_ N ) )
152 135 148 151 sylanbrc
 |-  ( ph -> N e. ( ZZ>= ` 5 ) )
153 breq2
 |-  ( p = q -> ( N < p <-> N < q ) )
154 breq1
 |-  ( p = q -> ( p <_ ( 2 x. N ) <-> q <_ ( 2 x. N ) ) )
155 153 154 anbi12d
 |-  ( p = q -> ( ( N < p /\ p <_ ( 2 x. N ) ) <-> ( N < q /\ q <_ ( 2 x. N ) ) ) )
156 155 cbvrexvw
 |-  ( E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) <-> E. q e. Prime ( N < q /\ q <_ ( 2 x. N ) ) )
157 5 156 sylnib
 |-  ( ph -> -. E. q e. Prime ( N < q /\ q <_ ( 2 x. N ) ) )
158 eqid
 |-  ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) )
159 eqid
 |-  ( |_ ` ( ( 2 x. N ) / 3 ) ) = ( |_ ` ( ( 2 x. N ) / 3 ) )
160 eqid
 |-  ( |_ ` ( sqrt ` ( 2 x. N ) ) ) = ( |_ ` ( sqrt ` ( 2 x. N ) ) )
161 152 157 158 159 160 bposlem6
 |-  ( ph -> ( ( 4 ^ N ) / N ) < ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) )
162 reexplog
 |-  ( ( 4 e. RR+ /\ N e. ZZ ) -> ( 4 ^ N ) = ( exp ` ( N x. ( log ` 4 ) ) ) )
163 103 135 162 sylancr
 |-  ( ph -> ( 4 ^ N ) = ( exp ` ( N x. ( log ` 4 ) ) ) )
164 60 reeflogd
 |-  ( ph -> ( exp ` ( log ` N ) ) = N )
165 164 eqcomd
 |-  ( ph -> N = ( exp ` ( log ` N ) ) )
166 163 165 oveq12d
 |-  ( ph -> ( ( 4 ^ N ) / N ) = ( ( exp ` ( N x. ( log ` 4 ) ) ) / ( exp ` ( log ` N ) ) ) )
167 107 recnd
 |-  ( ph -> ( N x. ( log ` 4 ) ) e. CC )
168 108 recnd
 |-  ( ph -> ( log ` N ) e. CC )
169 efsub
 |-  ( ( ( N x. ( log ` 4 ) ) e. CC /\ ( log ` N ) e. CC ) -> ( exp ` ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) ) = ( ( exp ` ( N x. ( log ` 4 ) ) ) / ( exp ` ( log ` N ) ) ) )
170 167 168 169 syl2anc
 |-  ( ph -> ( exp ` ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) ) = ( ( exp ` ( N x. ( log ` 4 ) ) ) / ( exp ` ( log ` N ) ) ) )
171 166 170 eqtr4d
 |-  ( ph -> ( ( 4 ^ N ) / N ) = ( exp ` ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) ) )
172 94 rpcnd
 |-  ( ph -> ( 2 x. N ) e. CC )
173 94 rpne0d
 |-  ( ph -> ( 2 x. N ) =/= 0 )
174 119 recnd
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) e. CC )
175 172 173 174 cxpefd
 |-  ( ph -> ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) = ( exp ` ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) ) )
176 2cn
 |-  2 e. CC
177 2ne0
 |-  2 =/= 0
178 128 recnd
 |-  ( ph -> ( ( ( 4 x. N ) / 3 ) - 5 ) e. CC )
179 cxpef
 |-  ( ( 2 e. CC /\ 2 =/= 0 /\ ( ( ( 4 x. N ) / 3 ) - 5 ) e. CC ) -> ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) = ( exp ` ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) )
180 176 177 178 179 mp3an12i
 |-  ( ph -> ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) = ( exp ` ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) )
181 175 180 oveq12d
 |-  ( ph -> ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) = ( ( exp ` ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) ) x. ( exp ` ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) ) )
182 121 recnd
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) e. CC )
183 130 recnd
 |-  ( ph -> ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) e. CC )
184 efadd
 |-  ( ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) e. CC /\ ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) e. CC ) -> ( exp ` ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) ) = ( ( exp ` ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) ) x. ( exp ` ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) ) )
185 182 183 184 syl2anc
 |-  ( ph -> ( exp ` ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) ) = ( ( exp ` ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) ) x. ( exp ` ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) ) )
186 181 185 eqtr4d
 |-  ( ph -> ( ( ( 2 x. N ) ^c ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) ) x. ( 2 ^c ( ( ( 4 x. N ) / 3 ) - 5 ) ) ) = ( exp ` ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) ) )
187 161 171 186 3brtr3d
 |-  ( ph -> ( exp ` ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) ) < ( exp ` ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) ) )
188 eflt
 |-  ( ( ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) e. RR /\ ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) e. RR ) -> ( ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) < ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) <-> ( exp ` ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) ) < ( exp ` ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) ) ) )
189 109 131 188 syl2anc
 |-  ( ph -> ( ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) < ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) <-> ( exp ` ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) ) < ( exp ` ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) ) ) )
190 187 189 mpbird
 |-  ( ph -> ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) < ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) )
191 109 131 134 190 ltsub1dd
 |-  ( ph -> ( ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) < ( ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) )
192 37 recnd
 |-  ( ph -> N e. CC )
193 mulcom
 |-  ( ( 2 e. CC /\ N e. CC ) -> ( 2 x. N ) = ( N x. 2 ) )
194 176 192 193 sylancr
 |-  ( ph -> ( 2 x. N ) = ( N x. 2 ) )
195 194 oveq1d
 |-  ( ph -> ( ( 2 x. N ) x. ( log ` 2 ) ) = ( ( N x. 2 ) x. ( log ` 2 ) ) )
196 92 recni
 |-  ( log ` 2 ) e. CC
197 mulass
 |-  ( ( N e. CC /\ 2 e. CC /\ ( log ` 2 ) e. CC ) -> ( ( N x. 2 ) x. ( log ` 2 ) ) = ( N x. ( 2 x. ( log ` 2 ) ) ) )
198 176 196 197 mp3an23
 |-  ( N e. CC -> ( ( N x. 2 ) x. ( log ` 2 ) ) = ( N x. ( 2 x. ( log ` 2 ) ) ) )
199 192 198 syl
 |-  ( ph -> ( ( N x. 2 ) x. ( log ` 2 ) ) = ( N x. ( 2 x. ( log ` 2 ) ) ) )
200 196 2timesi
 |-  ( 2 x. ( log ` 2 ) ) = ( ( log ` 2 ) + ( log ` 2 ) )
201 relogmul
 |-  ( ( 2 e. RR+ /\ 2 e. RR+ ) -> ( log ` ( 2 x. 2 ) ) = ( ( log ` 2 ) + ( log ` 2 ) ) )
202 90 90 201 mp2an
 |-  ( log ` ( 2 x. 2 ) ) = ( ( log ` 2 ) + ( log ` 2 ) )
203 2t2e4
 |-  ( 2 x. 2 ) = 4
204 203 fveq2i
 |-  ( log ` ( 2 x. 2 ) ) = ( log ` 4 )
205 200 202 204 3eqtr2i
 |-  ( 2 x. ( log ` 2 ) ) = ( log ` 4 )
206 205 oveq2i
 |-  ( N x. ( 2 x. ( log ` 2 ) ) ) = ( N x. ( log ` 4 ) )
207 199 206 eqtrdi
 |-  ( ph -> ( ( N x. 2 ) x. ( log ` 2 ) ) = ( N x. ( log ` 4 ) ) )
208 195 207 eqtrd
 |-  ( ph -> ( ( 2 x. N ) x. ( log ` 2 ) ) = ( N x. ( log ` 4 ) ) )
209 208 oveq1d
 |-  ( ph -> ( ( ( 2 x. N ) x. ( log ` 2 ) ) - ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) ) = ( ( N x. ( log ` 4 ) ) - ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) ) )
210 125 recnd
 |-  ( ph -> ( ( 4 x. N ) / 3 ) e. CC )
211 3rp
 |-  3 e. RR+
212 rpdivcl
 |-  ( ( ( 2 x. N ) e. RR+ /\ 3 e. RR+ ) -> ( ( 2 x. N ) / 3 ) e. RR+ )
213 94 211 212 sylancl
 |-  ( ph -> ( ( 2 x. N ) / 3 ) e. RR+ )
214 213 rpcnd
 |-  ( ph -> ( ( 2 x. N ) / 3 ) e. CC )
215 4p2e6
 |-  ( 4 + 2 ) = 6
216 215 oveq1i
 |-  ( ( 4 + 2 ) x. N ) = ( 6 x. N )
217 4cn
 |-  4 e. CC
218 adddir
 |-  ( ( 4 e. CC /\ 2 e. CC /\ N e. CC ) -> ( ( 4 + 2 ) x. N ) = ( ( 4 x. N ) + ( 2 x. N ) ) )
219 217 176 192 218 mp3an12i
 |-  ( ph -> ( ( 4 + 2 ) x. N ) = ( ( 4 x. N ) + ( 2 x. N ) ) )
220 216 219 eqtr3id
 |-  ( ph -> ( 6 x. N ) = ( ( 4 x. N ) + ( 2 x. N ) ) )
221 220 oveq1d
 |-  ( ph -> ( ( 6 x. N ) / 3 ) = ( ( ( 4 x. N ) + ( 2 x. N ) ) / 3 ) )
222 6cn
 |-  6 e. CC
223 3cn
 |-  3 e. CC
224 3ne0
 |-  3 =/= 0
225 223 224 pm3.2i
 |-  ( 3 e. CC /\ 3 =/= 0 )
226 div23
 |-  ( ( 6 e. CC /\ N e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 6 x. N ) / 3 ) = ( ( 6 / 3 ) x. N ) )
227 222 225 226 mp3an13
 |-  ( N e. CC -> ( ( 6 x. N ) / 3 ) = ( ( 6 / 3 ) x. N ) )
228 192 227 syl
 |-  ( ph -> ( ( 6 x. N ) / 3 ) = ( ( 6 / 3 ) x. N ) )
229 3t2e6
 |-  ( 3 x. 2 ) = 6
230 229 oveq1i
 |-  ( ( 3 x. 2 ) / 3 ) = ( 6 / 3 )
231 176 223 224 divcan3i
 |-  ( ( 3 x. 2 ) / 3 ) = 2
232 230 231 eqtr3i
 |-  ( 6 / 3 ) = 2
233 232 oveq1i
 |-  ( ( 6 / 3 ) x. N ) = ( 2 x. N )
234 228 233 eqtrdi
 |-  ( ph -> ( ( 6 x. N ) / 3 ) = ( 2 x. N ) )
235 123 recnd
 |-  ( ph -> ( 4 x. N ) e. CC )
236 remulcl
 |-  ( ( 2 e. RR /\ N e. RR ) -> ( 2 x. N ) e. RR )
237 117 37 236 sylancr
 |-  ( ph -> ( 2 x. N ) e. RR )
238 237 recnd
 |-  ( ph -> ( 2 x. N ) e. CC )
239 divdir
 |-  ( ( ( 4 x. N ) e. CC /\ ( 2 x. N ) e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( ( 4 x. N ) + ( 2 x. N ) ) / 3 ) = ( ( ( 4 x. N ) / 3 ) + ( ( 2 x. N ) / 3 ) ) )
240 225 239 mp3an3
 |-  ( ( ( 4 x. N ) e. CC /\ ( 2 x. N ) e. CC ) -> ( ( ( 4 x. N ) + ( 2 x. N ) ) / 3 ) = ( ( ( 4 x. N ) / 3 ) + ( ( 2 x. N ) / 3 ) ) )
241 235 238 240 syl2anc
 |-  ( ph -> ( ( ( 4 x. N ) + ( 2 x. N ) ) / 3 ) = ( ( ( 4 x. N ) / 3 ) + ( ( 2 x. N ) / 3 ) ) )
242 221 234 241 3eqtr3d
 |-  ( ph -> ( 2 x. N ) = ( ( ( 4 x. N ) / 3 ) + ( ( 2 x. N ) / 3 ) ) )
243 210 214 242 mvrladdd
 |-  ( ph -> ( ( 2 x. N ) - ( ( 4 x. N ) / 3 ) ) = ( ( 2 x. N ) / 3 ) )
244 243 oveq1d
 |-  ( ph -> ( ( ( 2 x. N ) - ( ( 4 x. N ) / 3 ) ) x. ( log ` 2 ) ) = ( ( ( 2 x. N ) / 3 ) x. ( log ` 2 ) ) )
245 100 recnd
 |-  ( ph -> ( log ` 2 ) e. CC )
246 238 210 245 subdird
 |-  ( ph -> ( ( ( 2 x. N ) - ( ( 4 x. N ) / 3 ) ) x. ( log ` 2 ) ) = ( ( ( 2 x. N ) x. ( log ` 2 ) ) - ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) ) )
247 244 246 eqtr3d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( log ` 2 ) ) = ( ( ( 2 x. N ) x. ( log ` 2 ) ) - ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) ) )
248 133 recnd
 |-  ( ph -> ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) e. CC )
249 167 248 168 nnncan2d
 |-  ( ph -> ( ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) = ( ( N x. ( log ` 4 ) ) - ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) ) )
250 209 247 249 3eqtr4d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( log ` 2 ) ) = ( ( ( N x. ( log ` 4 ) ) - ( log ` N ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) )
251 116 recnd
 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. CC )
252 176 a1i
 |-  ( ph -> 2 e. CC )
253 120 recnd
 |-  ( ph -> ( log ` ( 2 x. N ) ) e. CC )
254 251 252 253 adddird
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( 2 x. ( log ` ( 2 x. N ) ) ) ) )
255 relogmul
 |-  ( ( 2 e. RR+ /\ N e. RR+ ) -> ( log ` ( 2 x. N ) ) = ( ( log ` 2 ) + ( log ` N ) ) )
256 90 60 255 sylancr
 |-  ( ph -> ( log ` ( 2 x. N ) ) = ( ( log ` 2 ) + ( log ` N ) ) )
257 256 oveq2d
 |-  ( ph -> ( 2 x. ( log ` ( 2 x. N ) ) ) = ( 2 x. ( ( log ` 2 ) + ( log ` N ) ) ) )
258 252 245 168 adddid
 |-  ( ph -> ( 2 x. ( ( log ` 2 ) + ( log ` N ) ) ) = ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) )
259 257 258 eqtrd
 |-  ( ph -> ( 2 x. ( log ` ( 2 x. N ) ) ) = ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) )
260 259 oveq2d
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( 2 x. ( log ` ( 2 x. N ) ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) ) )
261 254 260 eqtrd
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) ) )
262 5cn
 |-  5 e. CC
263 262 a1i
 |-  ( ph -> 5 e. CC )
264 210 263 245 subdird
 |-  ( ph -> ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) = ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( 5 x. ( log ` 2 ) ) ) )
265 264 oveq1d
 |-  ( ph -> ( ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) = ( ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( 5 x. ( log ` 2 ) ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) )
266 262 196 mulcli
 |-  ( 5 x. ( log ` 2 ) ) e. CC
267 266 a1i
 |-  ( ph -> ( 5 x. ( log ` 2 ) ) e. CC )
268 248 267 168 nnncan1d
 |-  ( ph -> ( ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( 5 x. ( log ` 2 ) ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) = ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) )
269 265 268 eqtrd
 |-  ( ph -> ( ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) = ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) )
270 261 269 oveq12d
 |-  ( ph -> ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) ) = ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) )
271 134 recnd
 |-  ( ph -> ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) e. CC )
272 182 183 271 addsubassd
 |-  ( ph -> ( ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) = ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) ) )
273 262 223 196 subdiri
 |-  ( ( 5 - 3 ) x. ( log ` 2 ) ) = ( ( 5 x. ( log ` 2 ) ) - ( 3 x. ( log ` 2 ) ) )
274 3p2e5
 |-  ( 3 + 2 ) = 5
275 274 oveq1i
 |-  ( ( 3 + 2 ) - 3 ) = ( 5 - 3 )
276 pncan2
 |-  ( ( 3 e. CC /\ 2 e. CC ) -> ( ( 3 + 2 ) - 3 ) = 2 )
277 223 176 276 mp2an
 |-  ( ( 3 + 2 ) - 3 ) = 2
278 275 277 eqtr3i
 |-  ( 5 - 3 ) = 2
279 278 oveq1i
 |-  ( ( 5 - 3 ) x. ( log ` 2 ) ) = ( 2 x. ( log ` 2 ) )
280 273 279 eqtr3i
 |-  ( ( 5 x. ( log ` 2 ) ) - ( 3 x. ( log ` 2 ) ) ) = ( 2 x. ( log ` 2 ) )
281 280 a1i
 |-  ( ph -> ( ( 5 x. ( log ` 2 ) ) - ( 3 x. ( log ` 2 ) ) ) = ( 2 x. ( log ` 2 ) ) )
282 mulcl
 |-  ( ( 2 e. CC /\ ( log ` N ) e. CC ) -> ( 2 x. ( log ` N ) ) e. CC )
283 176 168 282 sylancr
 |-  ( ph -> ( 2 x. ( log ` N ) ) e. CC )
284 df-3
 |-  3 = ( 2 + 1 )
285 284 oveq1i
 |-  ( 3 x. ( log ` N ) ) = ( ( 2 + 1 ) x. ( log ` N ) )
286 1cnd
 |-  ( ph -> 1 e. CC )
287 252 286 168 adddird
 |-  ( ph -> ( ( 2 + 1 ) x. ( log ` N ) ) = ( ( 2 x. ( log ` N ) ) + ( 1 x. ( log ` N ) ) ) )
288 285 287 syl5eq
 |-  ( ph -> ( 3 x. ( log ` N ) ) = ( ( 2 x. ( log ` N ) ) + ( 1 x. ( log ` N ) ) ) )
289 168 mulid2d
 |-  ( ph -> ( 1 x. ( log ` N ) ) = ( log ` N ) )
290 289 oveq2d
 |-  ( ph -> ( ( 2 x. ( log ` N ) ) + ( 1 x. ( log ` N ) ) ) = ( ( 2 x. ( log ` N ) ) + ( log ` N ) ) )
291 288 290 eqtrd
 |-  ( ph -> ( 3 x. ( log ` N ) ) = ( ( 2 x. ( log ` N ) ) + ( log ` N ) ) )
292 291 oveq1d
 |-  ( ph -> ( ( 3 x. ( log ` N ) ) - ( 5 x. ( log ` 2 ) ) ) = ( ( ( 2 x. ( log ` N ) ) + ( log ` N ) ) - ( 5 x. ( log ` 2 ) ) ) )
293 283 168 267 292 assraddsubd
 |-  ( ph -> ( ( 3 x. ( log ` N ) ) - ( 5 x. ( log ` 2 ) ) ) = ( ( 2 x. ( log ` N ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) )
294 281 293 oveq12d
 |-  ( ph -> ( ( ( 5 x. ( log ` 2 ) ) - ( 3 x. ( log ` 2 ) ) ) + ( ( 3 x. ( log ` N ) ) - ( 5 x. ( log ` 2 ) ) ) ) = ( ( 2 x. ( log ` 2 ) ) + ( ( 2 x. ( log ` N ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) ) )
295 relogdiv
 |-  ( ( N e. RR+ /\ 2 e. RR+ ) -> ( log ` ( N / 2 ) ) = ( ( log ` N ) - ( log ` 2 ) ) )
296 60 90 295 sylancl
 |-  ( ph -> ( log ` ( N / 2 ) ) = ( ( log ` N ) - ( log ` 2 ) ) )
297 296 oveq2d
 |-  ( ph -> ( 3 x. ( log ` ( N / 2 ) ) ) = ( 3 x. ( ( log ` N ) - ( log ` 2 ) ) ) )
298 subdi
 |-  ( ( 3 e. CC /\ ( log ` N ) e. CC /\ ( log ` 2 ) e. CC ) -> ( 3 x. ( ( log ` N ) - ( log ` 2 ) ) ) = ( ( 3 x. ( log ` N ) ) - ( 3 x. ( log ` 2 ) ) ) )
299 223 196 298 mp3an13
 |-  ( ( log ` N ) e. CC -> ( 3 x. ( ( log ` N ) - ( log ` 2 ) ) ) = ( ( 3 x. ( log ` N ) ) - ( 3 x. ( log ` 2 ) ) ) )
300 168 299 syl
 |-  ( ph -> ( 3 x. ( ( log ` N ) - ( log ` 2 ) ) ) = ( ( 3 x. ( log ` N ) ) - ( 3 x. ( log ` 2 ) ) ) )
301 297 300 eqtrd
 |-  ( ph -> ( 3 x. ( log ` ( N / 2 ) ) ) = ( ( 3 x. ( log ` N ) ) - ( 3 x. ( log ` 2 ) ) ) )
302 div23
 |-  ( ( 2 e. CC /\ N e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 2 x. N ) / 3 ) = ( ( 2 / 3 ) x. N ) )
303 176 225 302 mp3an13
 |-  ( N e. CC -> ( ( 2 x. N ) / 3 ) = ( ( 2 / 3 ) x. N ) )
304 192 303 syl
 |-  ( ph -> ( ( 2 x. N ) / 3 ) = ( ( 2 / 3 ) x. N ) )
305 223 176 223 176 177 177 divmuldivi
 |-  ( ( 3 / 2 ) x. ( 3 / 2 ) ) = ( ( 3 x. 3 ) / ( 2 x. 2 ) )
306 3t3e9
 |-  ( 3 x. 3 ) = 9
307 306 203 oveq12i
 |-  ( ( 3 x. 3 ) / ( 2 x. 2 ) ) = ( 9 / 4 )
308 305 307 eqtr2i
 |-  ( 9 / 4 ) = ( ( 3 / 2 ) x. ( 3 / 2 ) )
309 308 a1i
 |-  ( ph -> ( 9 / 4 ) = ( ( 3 / 2 ) x. ( 3 / 2 ) ) )
310 304 309 oveq12d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( 9 / 4 ) ) = ( ( ( 2 / 3 ) x. N ) x. ( ( 3 / 2 ) x. ( 3 / 2 ) ) ) )
311 176 223 224 divcli
 |-  ( 2 / 3 ) e. CC
312 223 176 177 divcli
 |-  ( 3 / 2 ) e. CC
313 mul4
 |-  ( ( ( ( 2 / 3 ) e. CC /\ N e. CC ) /\ ( ( 3 / 2 ) e. CC /\ ( 3 / 2 ) e. CC ) ) -> ( ( ( 2 / 3 ) x. N ) x. ( ( 3 / 2 ) x. ( 3 / 2 ) ) ) = ( ( ( 2 / 3 ) x. ( 3 / 2 ) ) x. ( N x. ( 3 / 2 ) ) ) )
314 312 312 313 mpanr12
 |-  ( ( ( 2 / 3 ) e. CC /\ N e. CC ) -> ( ( ( 2 / 3 ) x. N ) x. ( ( 3 / 2 ) x. ( 3 / 2 ) ) ) = ( ( ( 2 / 3 ) x. ( 3 / 2 ) ) x. ( N x. ( 3 / 2 ) ) ) )
315 311 192 314 sylancr
 |-  ( ph -> ( ( ( 2 / 3 ) x. N ) x. ( ( 3 / 2 ) x. ( 3 / 2 ) ) ) = ( ( ( 2 / 3 ) x. ( 3 / 2 ) ) x. ( N x. ( 3 / 2 ) ) ) )
316 divcan6
 |-  ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 2 / 3 ) x. ( 3 / 2 ) ) = 1 )
317 176 177 223 224 316 mp4an
 |-  ( ( 2 / 3 ) x. ( 3 / 2 ) ) = 1
318 317 oveq1i
 |-  ( ( ( 2 / 3 ) x. ( 3 / 2 ) ) x. ( N x. ( 3 / 2 ) ) ) = ( 1 x. ( N x. ( 3 / 2 ) ) )
319 mulcl
 |-  ( ( N e. CC /\ ( 3 / 2 ) e. CC ) -> ( N x. ( 3 / 2 ) ) e. CC )
320 192 312 319 sylancl
 |-  ( ph -> ( N x. ( 3 / 2 ) ) e. CC )
321 320 mulid2d
 |-  ( ph -> ( 1 x. ( N x. ( 3 / 2 ) ) ) = ( N x. ( 3 / 2 ) ) )
322 318 321 syl5eq
 |-  ( ph -> ( ( ( 2 / 3 ) x. ( 3 / 2 ) ) x. ( N x. ( 3 / 2 ) ) ) = ( N x. ( 3 / 2 ) ) )
323 2cnne0
 |-  ( 2 e. CC /\ 2 =/= 0 )
324 div12
 |-  ( ( N e. CC /\ 3 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( N x. ( 3 / 2 ) ) = ( 3 x. ( N / 2 ) ) )
325 223 323 324 mp3an23
 |-  ( N e. CC -> ( N x. ( 3 / 2 ) ) = ( 3 x. ( N / 2 ) ) )
326 192 325 syl
 |-  ( ph -> ( N x. ( 3 / 2 ) ) = ( 3 x. ( N / 2 ) ) )
327 322 326 eqtrd
 |-  ( ph -> ( ( ( 2 / 3 ) x. ( 3 / 2 ) ) x. ( N x. ( 3 / 2 ) ) ) = ( 3 x. ( N / 2 ) ) )
328 310 315 327 3eqtrd
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( 9 / 4 ) ) = ( 3 x. ( N / 2 ) ) )
329 328 83 oveq12d
 |-  ( ph -> ( ( ( ( 2 x. N ) / 3 ) x. ( 9 / 4 ) ) x. ( G ` ( N / 2 ) ) ) = ( ( 3 x. ( N / 2 ) ) x. ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) ) )
330 76 recni
 |-  ( 9 / 4 ) e. CC
331 330 a1i
 |-  ( ph -> ( 9 / 4 ) e. CC )
332 86 recnd
 |-  ( ph -> ( G ` ( N / 2 ) ) e. CC )
333 214 331 332 mulassd
 |-  ( ph -> ( ( ( ( 2 x. N ) / 3 ) x. ( 9 / 4 ) ) x. ( G ` ( N / 2 ) ) ) = ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) )
334 223 a1i
 |-  ( ph -> 3 e. CC )
335 77 rpcnd
 |-  ( ph -> ( N / 2 ) e. CC )
336 84 recnd
 |-  ( ph -> ( log ` ( N / 2 ) ) e. CC )
337 77 rpne0d
 |-  ( ph -> ( N / 2 ) =/= 0 )
338 336 335 337 divcld
 |-  ( ph -> ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) e. CC )
339 334 335 338 mulassd
 |-  ( ph -> ( ( 3 x. ( N / 2 ) ) x. ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) ) = ( 3 x. ( ( N / 2 ) x. ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) ) ) )
340 336 335 337 divcan2d
 |-  ( ph -> ( ( N / 2 ) x. ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) ) = ( log ` ( N / 2 ) ) )
341 340 oveq2d
 |-  ( ph -> ( 3 x. ( ( N / 2 ) x. ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) ) ) = ( 3 x. ( log ` ( N / 2 ) ) ) )
342 339 341 eqtrd
 |-  ( ph -> ( ( 3 x. ( N / 2 ) ) x. ( ( log ` ( N / 2 ) ) / ( N / 2 ) ) ) = ( 3 x. ( log ` ( N / 2 ) ) ) )
343 329 333 342 3eqtr3d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) = ( 3 x. ( log ` ( N / 2 ) ) ) )
344 223 196 mulcli
 |-  ( 3 x. ( log ` 2 ) ) e. CC
345 344 a1i
 |-  ( ph -> ( 3 x. ( log ` 2 ) ) e. CC )
346 mulcl
 |-  ( ( 3 e. CC /\ ( log ` N ) e. CC ) -> ( 3 x. ( log ` N ) ) e. CC )
347 223 168 346 sylancr
 |-  ( ph -> ( 3 x. ( log ` N ) ) e. CC )
348 267 345 347 npncan3d
 |-  ( ph -> ( ( ( 5 x. ( log ` 2 ) ) - ( 3 x. ( log ` 2 ) ) ) + ( ( 3 x. ( log ` N ) ) - ( 5 x. ( log ` 2 ) ) ) ) = ( ( 3 x. ( log ` N ) ) - ( 3 x. ( log ` 2 ) ) ) )
349 301 343 348 3eqtr4d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) = ( ( ( 5 x. ( log ` 2 ) ) - ( 3 x. ( log ` 2 ) ) ) + ( ( 3 x. ( log ` N ) ) - ( 5 x. ( log ` 2 ) ) ) ) )
350 117 92 remulcli
 |-  ( 2 x. ( log ` 2 ) ) e. RR
351 350 recni
 |-  ( 2 x. ( log ` 2 ) ) e. CC
352 351 a1i
 |-  ( ph -> ( 2 x. ( log ` 2 ) ) e. CC )
353 subcl
 |-  ( ( ( log ` N ) e. CC /\ ( 5 x. ( log ` 2 ) ) e. CC ) -> ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) e. CC )
354 168 266 353 sylancl
 |-  ( ph -> ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) e. CC )
355 352 283 354 addassd
 |-  ( ph -> ( ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) = ( ( 2 x. ( log ` 2 ) ) + ( ( 2 x. ( log ` N ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) ) )
356 294 349 355 3eqtr4d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) = ( ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) )
357 356 oveq2d
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) ) )
358 mulcl
 |-  ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) e. CC /\ ( log ` 2 ) e. CC ) -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) e. CC )
359 251 196 358 sylancl
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) e. CC )
360 251 168 mulcld
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) e. CC )
361 88 recnd
 |-  ( ph -> ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) e. CC )
362 214 361 mulcld
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) e. CC )
363 359 360 362 addassd
 |-  ( ph -> ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) + ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) + ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) ) )
364 256 oveq2d
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) = ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( ( log ` 2 ) + ( log ` N ) ) ) )
365 251 245 168 adddid
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( ( log ` 2 ) + ( log ` N ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) + ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) ) )
366 364 365 eqtrd
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) + ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) ) )
367 366 oveq1d
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) = ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) + ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) )
368 58 oveq2d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( F ` N ) ) = ( ( ( 2 x. N ) / 3 ) x. ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) ) )
369 89 recnd
 |-  ( ph -> ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) e. CC )
370 97 recnd
 |-  ( ph -> ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) e. CC )
371 214 369 370 adddid
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) + ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) ) = ( ( ( ( 2 x. N ) / 3 ) x. ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) ) )
372 368 371 eqtrd
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( F ` N ) ) = ( ( ( ( 2 x. N ) / 3 ) x. ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) ) )
373 72 recnd
 |-  ( ph -> ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) e. CC )
374 214 373 361 adddid
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) = ( ( ( ( 2 x. N ) / 3 ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) )
375 94 rpge0d
 |-  ( ph -> 0 <_ ( 2 x. N ) )
376 remsqsqrt
 |-  ( ( ( 2 x. N ) e. RR /\ 0 <_ ( 2 x. N ) ) -> ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) = ( 2 x. N ) )
377 237 375 376 syl2anc
 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) = ( 2 x. N ) )
378 377 oveq1d
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) / 3 ) = ( ( 2 x. N ) / 3 ) )
379 113 recnd
 |-  ( ph -> ( sqrt ` ( 2 x. N ) ) e. CC )
380 224 a1i
 |-  ( ph -> 3 =/= 0 )
381 379 379 334 380 div23d
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) x. ( sqrt ` ( 2 x. N ) ) ) / 3 ) = ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( sqrt ` ( 2 x. N ) ) ) )
382 378 381 eqtr3d
 |-  ( ph -> ( ( 2 x. N ) / 3 ) = ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( sqrt ` ( 2 x. N ) ) ) )
383 382 oveq1d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( sqrt ` ( 2 x. N ) ) ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) )
384 251 379 373 mulassd
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( sqrt ` ( 2 x. N ) ) ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) = ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( ( sqrt ` ( 2 x. N ) ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) ) )
385 0le2
 |-  0 <_ 2
386 117 385 pm3.2i
 |-  ( 2 e. RR /\ 0 <_ 2 )
387 60 rprege0d
 |-  ( ph -> ( N e. RR /\ 0 <_ N ) )
388 sqrtmul
 |-  ( ( ( 2 e. RR /\ 0 <_ 2 ) /\ ( N e. RR /\ 0 <_ N ) ) -> ( sqrt ` ( 2 x. N ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) )
389 386 387 388 sylancr
 |-  ( ph -> ( sqrt ` ( 2 x. N ) ) = ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) )
390 389 oveq1d
 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) )
391 59 recni
 |-  ( sqrt ` 2 ) e. CC
392 391 a1i
 |-  ( ph -> ( sqrt ` 2 ) e. CC )
393 61 rpcnd
 |-  ( ph -> ( sqrt ` N ) e. CC )
394 70 recnd
 |-  ( ph -> ( G ` ( sqrt ` N ) ) e. CC )
395 392 393 392 394 mul4d
 |-  ( ph -> ( ( ( sqrt ` 2 ) x. ( sqrt ` N ) ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) = ( ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) x. ( ( sqrt ` N ) x. ( G ` ( sqrt ` N ) ) ) ) )
396 remsqsqrt
 |-  ( ( 2 e. RR /\ 0 <_ 2 ) -> ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) = 2 )
397 117 385 396 mp2an
 |-  ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) = 2
398 397 a1i
 |-  ( ph -> ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) = 2 )
399 67 oveq2d
 |-  ( ph -> ( ( sqrt ` N ) x. ( G ` ( sqrt ` N ) ) ) = ( ( sqrt ` N ) x. ( ( log ` ( sqrt ` N ) ) / ( sqrt ` N ) ) ) )
400 68 recnd
 |-  ( ph -> ( log ` ( sqrt ` N ) ) e. CC )
401 61 rpne0d
 |-  ( ph -> ( sqrt ` N ) =/= 0 )
402 400 393 401 divcan2d
 |-  ( ph -> ( ( sqrt ` N ) x. ( ( log ` ( sqrt ` N ) ) / ( sqrt ` N ) ) ) = ( log ` ( sqrt ` N ) ) )
403 399 402 eqtrd
 |-  ( ph -> ( ( sqrt ` N ) x. ( G ` ( sqrt ` N ) ) ) = ( log ` ( sqrt ` N ) ) )
404 398 403 oveq12d
 |-  ( ph -> ( ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) x. ( ( sqrt ` N ) x. ( G ` ( sqrt ` N ) ) ) ) = ( 2 x. ( log ` ( sqrt ` N ) ) ) )
405 400 2timesd
 |-  ( ph -> ( 2 x. ( log ` ( sqrt ` N ) ) ) = ( ( log ` ( sqrt ` N ) ) + ( log ` ( sqrt ` N ) ) ) )
406 61 61 relogmuld
 |-  ( ph -> ( log ` ( ( sqrt ` N ) x. ( sqrt ` N ) ) ) = ( ( log ` ( sqrt ` N ) ) + ( log ` ( sqrt ` N ) ) ) )
407 remsqsqrt
 |-  ( ( N e. RR /\ 0 <_ N ) -> ( ( sqrt ` N ) x. ( sqrt ` N ) ) = N )
408 387 407 syl
 |-  ( ph -> ( ( sqrt ` N ) x. ( sqrt ` N ) ) = N )
409 408 fveq2d
 |-  ( ph -> ( log ` ( ( sqrt ` N ) x. ( sqrt ` N ) ) ) = ( log ` N ) )
410 406 409 eqtr3d
 |-  ( ph -> ( ( log ` ( sqrt ` N ) ) + ( log ` ( sqrt ` N ) ) ) = ( log ` N ) )
411 404 405 410 3eqtrd
 |-  ( ph -> ( ( ( sqrt ` 2 ) x. ( sqrt ` 2 ) ) x. ( ( sqrt ` N ) x. ( G ` ( sqrt ` N ) ) ) ) = ( log ` N ) )
412 390 395 411 3eqtrd
 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) = ( log ` N ) )
413 412 oveq2d
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( ( sqrt ` ( 2 x. N ) ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) ) = ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) )
414 383 384 413 3eqtrd
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) = ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) )
415 414 oveq1d
 |-  ( ph -> ( ( ( ( 2 x. N ) / 3 ) x. ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) )
416 374 415 eqtrd
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) )
417 382 oveq1d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( sqrt ` ( 2 x. N ) ) ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) )
418 251 379 370 mulassd
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( sqrt ` ( 2 x. N ) ) ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) = ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( ( sqrt ` ( 2 x. N ) ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) ) )
419 95 rpne0d
 |-  ( ph -> ( sqrt ` ( 2 x. N ) ) =/= 0 )
420 245 379 419 divcan2d
 |-  ( ph -> ( ( sqrt ` ( 2 x. N ) ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) = ( log ` 2 ) )
421 420 oveq2d
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( ( sqrt ` ( 2 x. N ) ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) ) = ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) )
422 417 418 421 3eqtrd
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) = ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) )
423 416 422 oveq12d
 |-  ( ph -> ( ( ( ( 2 x. N ) / 3 ) x. ( ( ( sqrt ` 2 ) x. ( G ` ( sqrt ` N ) ) ) + ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( log ` 2 ) / ( sqrt ` ( 2 x. N ) ) ) ) ) = ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) + ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) ) )
424 360 362 addcld
 |-  ( ph -> ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) e. CC )
425 424 359 addcomd
 |-  ( ph -> ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) + ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) + ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) ) )
426 372 423 425 3eqtrd
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( F ` N ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` 2 ) ) + ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` N ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) ) )
427 363 367 426 3eqtr4rd
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( F ` N ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( 2 x. N ) / 3 ) x. ( ( 9 / 4 ) x. ( G ` ( N / 2 ) ) ) ) ) )
428 251 253 mulcld
 |-  ( ph -> ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) e. CC )
429 addcl
 |-  ( ( ( 2 x. ( log ` 2 ) ) e. CC /\ ( 2 x. ( log ` N ) ) e. CC ) -> ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) e. CC )
430 351 283 429 sylancr
 |-  ( ph -> ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) e. CC )
431 428 430 354 addassd
 |-  ( ph -> ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) = ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) ) )
432 357 427 431 3eqtr4d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( F ` N ) ) = ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) x. ( log ` ( 2 x. N ) ) ) + ( ( 2 x. ( log ` 2 ) ) + ( 2 x. ( log ` N ) ) ) ) + ( ( log ` N ) - ( 5 x. ( log ` 2 ) ) ) ) )
433 270 272 432 3eqtr4rd
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( F ` N ) ) = ( ( ( ( ( ( sqrt ` ( 2 x. N ) ) / 3 ) + 2 ) x. ( log ` ( 2 x. N ) ) ) + ( ( ( ( 4 x. N ) / 3 ) - 5 ) x. ( log ` 2 ) ) ) - ( ( ( ( 4 x. N ) / 3 ) x. ( log ` 2 ) ) - ( log ` N ) ) ) )
434 191 250 433 3brtr4d
 |-  ( ph -> ( ( ( 2 x. N ) / 3 ) x. ( log ` 2 ) ) < ( ( ( 2 x. N ) / 3 ) x. ( F ` N ) ) )
435 100 99 213 ltmul2d
 |-  ( ph -> ( ( log ` 2 ) < ( F ` N ) <-> ( ( ( 2 x. N ) / 3 ) x. ( log ` 2 ) ) < ( ( ( 2 x. N ) / 3 ) x. ( F ` N ) ) ) )
436 434 435 mpbird
 |-  ( ph -> ( log ` 2 ) < ( F ` N ) )
437 46 100 99 101 436 lttrd
 |-  ( ph -> ( F ` ; 6 4 ) < ( F ` N ) )
438 46 99 437 ltnsymd
 |-  ( ph -> -. ( F ` N ) < ( F ` ; 6 4 ) )
439 43 438 pm2.21dd
 |-  ( ph -> ps )